Archives of Pharmacal Research

, 34:1509 | Cite as

The effects of cannabidiolic acid and cannabidiol on contractility of the gastrointestinal tract of Suncus murinus

  • Nina L. ClunyEmail author
  • Robert J. Naylor
  • Brian A. Whittle
  • Farideh A. Javid
Research Articles Drug Actions


Cannabidiol (CBD) has been shown to inhibit gastrointestinal (GI) transit in pathophysiologic in vivo models, while having no effect in physiologic controls. The actions of the precursor of CBD, cannabidiolic acid (CBDA), have not been investigated in the GI tract. The actions of these phytocannabinoids on the contractility of the GI tract of Suncus murinus were investigated in the current study. The effects of CBDA and CBD in resting state and pre-contracted isolated intestinal segments, and on the contractile effects of carbachol and electrical field stimulation (EFS) on the intestines of S. murinus were examined. CBDA and CBD induced a reduction in resting tissue tension of isolated intestinal segments which was not blocked by the cannabinoid CB1 receptor antagonist, AM251, the CB2 receptor antagonist AM630, or tetrodotoxin. CBDA and CBD reduced the magnitude of contractions induced by carbachol and the tension of intestinal segments that were pre-contracted with potassium chloride. In tissues stimulated by EFS, CBDA inhibited contractions induced by lower frequencies (0.1–4.0 Hz) of EFS, while CBD inhibited contractions induced by higher frequencies (4.0–20.0 Hz) of EFS. The data suggest that CBDA and CBD have inhibitory actions on the intestines of S. murinus that are not neuronallymediated or mediated via CB1 or CB2 receptors.


Cannabidiol Cannabidiolic acid Gastrointestinal tract Suncus murinus 


  1. Adams, R., Hunt, M., and Clark, J. H., Structure of cannabidiol, a product isolated from the marihuana extract of Minnesota wild hemp I. J. Am. Chem. Soc., 62, 196–200 (1940).CrossRefGoogle Scholar
  2. Bisogno, T., Hanus, L., De Petrocellis L., Tchilibon, S., Ponde, D. E., Brandi, I., Moriello, A. S., Davis, J. B., Mechoulam, R., and Di Marzo, V., Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol., 134, 845–852 (2001).PubMedCrossRefGoogle Scholar
  3. Bolton, T. B., Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev., 59, 606–718 (1979).PubMedGoogle Scholar
  4. Borrelli, F., Aviello, G., Romano, B., Orlando, P., Capasso, R., Maiello, F., Guadagno, F., Petrosino, S., Capasso, F., Di Marzo, V., and Izzo, A. A., Cannabidiol, a safe and nonpsychotropic ingredient of the marijuana plant Cannabis sativa, is protective in a murine model of colitis. J. Mol. Med (Berl)., 87, 1111–1121 (2009).CrossRefGoogle Scholar
  5. Capasso, R., Borrelli, F., Aviello, G., Romano, B., Scalisi, C., Capasso, F., and Izzo, A. A., Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice. Br. J. Pharmacol., 154, 1001–1008 (2008).PubMedCrossRefGoogle Scholar
  6. Colbert, E. H., Evolution of vertebrates, 2nd ed. Wiley & sons, New York, (1969).Google Scholar
  7. de Filippis, D., Iuvone, T., d’amico, A., Esposito, G., Steardo, L., Herman, A. G., Pelckmans, P. A., de Winter, B. Y., and de Man, J. G., Effect of cannabidiol on sepsis-induced motility disturbances in mice: involvement of CB receptors and fatty acid amide hydrolase. Neurogastroenterol. Motil., 20, 919–927 (2008).PubMedCrossRefGoogle Scholar
  8. de Man, J. G., Boeckx, S., Anguille, S., de Winter, B. Y., de Schepper, H. U., Herman, A. G., and Pelckmans, P. A., Functional study on TRPV1-mediated signalling in the mouse small intestine: involvement of tachykinin receptors. Neurogastroenterol. Motil., 20, 546–556 (2008).PubMedCrossRefGoogle Scholar
  9. de Zeeuw, R. A., Wijsbeek, J., Breimer, D. D., Vree, T. B., van Ginneken, C. A., and van Rossum, J. M., Cannabinoids with a propyl side-chain in cannabis: occurrence and chromatographic behavior. Science, 175, 778–779 (1972).PubMedCrossRefGoogle Scholar
  10. Drysdale, A. J., Ryan, D., Pertwee, R. G., and Platt, B., Cannabidiol-induced intracellular Ca2+ elevations in hippocampal cells. Neuropharmacology, 50, 621–631 (2006).PubMedCrossRefGoogle Scholar
  11. el-Darawy, Z. I., Abu-Eitah, R., and Mobarak, Z. M., Studies on hashish. 5-Identification of cannabidiol and cannabidiolic acid by ultraviolet spectrophotometry. Pharmazie, 28, 129–133 (1973).PubMedGoogle Scholar
  12. Fujimoto, S., Mori, M., Tsushima, H., and Kunimatsu, M., Capsaicin-induced, capsazepine-insensitive relaxation of the guinea-pig ileum. Eur. J. Pharmacol., 530, 144–151 (2006).PubMedCrossRefGoogle Scholar
  13. Gershon, M. D., Effects of tetrodotoxin on innervated smooth muscle preparations. Br. J. Pharmacol. Chemother., 29, 259–279 (1967).PubMedGoogle Scholar
  14. Harada, N., Nemoto, K., Okamura, T., Ninomiya, N., Suzuki, H., and Yamamoto, Y., Effects of cannabinoids on colonic muscle contractility and tension in guinea pigs. J. Nihon Med. Sch., 72, 43–51 (2005).PubMedCrossRefGoogle Scholar
  15. Hoyle, C. H., Chakrabarti, G., Pendleton, N. P., and Andrews, P. L., Neuromuscular transmission and innervation in the urinary bladder of the insectivore Suncus murinus. J. Auton. Nerv. Syst., 69, 31–38 (1998).PubMedCrossRefGoogle Scholar
  16. Hoyle, C. H., Hill, J., Sanger, G. J., and Andrews, P. L., Analysis of pancreatic polypeptide cDNA from the house musk shrew, Suncus murinus, suggests a phylogenetically closer relationship with humans than for other small laboratory animal species. Regul. Pept., 114, 137–144 (2003).PubMedCrossRefGoogle Scholar
  17. Jacob, A. and Todd, A. R., Cannabis indica part II isolation of cannabidiol from Egyptian hashish observations on the structure of cannabinol. J. Chem. Soc., 649–653 (1940).Google Scholar
  18. Javid, F. A. and Naylor, R. J., Characterisation of 5-HT2 receptor subtypes in the Suncus murinus intestine. Eur. J. Pharmacol., 381, 161–169 (1999a).PubMedCrossRefGoogle Scholar
  19. Javid, F. A. and Naylor, R. J., Characterization of the 5-hydroxytryptamine receptors mediating contraction in the intestine of Suncus murinus. Br. J. Pharmacol., 127, 1867–1875 (1999b).PubMedCrossRefGoogle Scholar
  20. Kao, C. Y., Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol. Rev., 18, 997–1049 (1966).PubMedGoogle Scholar
  21. Krejci, K. D. and Santavy, F., Isolace dalsich latek z listi indickeho konopi Cannabis sativa L. Acta Univ. Palacki. Olomuc. Fac. Med., 6, 59–66 (1955).Google Scholar
  22. Kurohmaru, M., Nishida, T., and Mochizuki, K., Morphological study on the intestine of the must shrew, Suncus murinus. Nihon Juigaku Zasshi, 42, 61–71 (1980).PubMedCrossRefGoogle Scholar
  23. Mechoulam, R. and Gaoni, Y., Hashish, IV. The isolation and structure of cannabinolic cannabidiolic and cannabigerolic acids. Tetrahedron, 21, 1223–1229 (1965).PubMedCrossRefGoogle Scholar
  24. Russo, E., History of cannabis as a medicine, in The medicinal uses of cannabis and cannabinioids, Guy, G. W., Whittle, B. A., and Robson, P. J. (eds.). Pharmaceutical Press, London, pp. 1–15, (2003).Google Scholar
  25. Showalter, V. M., Compton, D. R., Martin, B. R., and Abood, M. E., Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. J. Pharmacol. Exp. Ther., 278, 989–999 (1996).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Nina L. Cluny
    • 1
    • 2
    Email author
  • Robert J. Naylor
    • 1
  • Brian A. Whittle
    • 3
  • Farideh A. Javid
    • 1
    • 4
  1. 1.Bradford School of PharmacyUniversity of BradfordBradfordUK
  2. 2.Department of Physiology and PharmacologyUniversity of CalgaryCalgaryCanada
  3. 3.GW Pharmaceuticals Ltd.SalisburyUK
  4. 4.Pharmacy, School of Applied SciencesUniversity of HuddersfieldHuddersfiledUK

Personalised recommendations