Archives of Pharmacal Research

, Volume 34, Issue 6, pp 919–929 | Cite as

An investigation of formulation factors affecting feasibility of alginate-chitosan microparticles for oral delivery of naproxen

  • Bojan Čalija
  • Nebojsa Cekić
  • Snežana Savić
  • Danina Krajišnik
  • Rolf Daniels
  • Jela Milić
Research Articles Drug Development

Abstract

In the present work we investigated the feasibility of chitosan treated Ca-alginate microparticles for delivery of naproxen in lower parts of GIT and evaluated influence of formulation factors on their physicochemical characteristics and drug release profiles. Investigated factors were drug/polymer ratio, chitosan molecular weight, chitosan concentration in hardening medium, and hardening time. Sixteen microparticle formulations were prepared utilizing 24 full factorial design (each factor was varied at two levels). Microparticles size varied between 262.3 ± 14.9 and 358.4 ± 21.7 μm with slightly deformed spherical shape. Low naproxen solubility and rapid reaction of ionotropic gelation resulted in high encapsulation efficiency (> 75.19%). Under conditions mimicking those in the stomach, after two hours, less than 6.18% of naproxen was released. Significant influence of all investigated factors on drug release rate was observed in simulated small intestinal fluid. Furthermore, experimental design analysis revealed that chitosan molecular weight and its concentration had the most pronounced effect on naproxen release. Release data kinetics indicated predominant influence of a pH-dependent relaxation mechanism on drug release from microparticles.

Key words

Naproxen Alginate-chitosan microparticles Experimental design Sustained release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acartürk, F. and Takka, S., Calcium alginate microparticles for oral administration: II. Effect of formulation factors on drug release and drug entrapment efficiency. J. Microencapsul., 16, 291–301 (1999).PubMedCrossRefGoogle Scholar
  2. Brazel, C. S. and Peppas, N. A., Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer, 40, 3383–3398 (1999).CrossRefGoogle Scholar
  3. Cárdenas, A., Argüelles-Monal, W., Goycoolea, F. M., Higuera-Ciapara, I., and Peniche, C., Diffusion through membranes of the polyelectrolyte complex of chitosan and alginate. Macromol. Biosci., 3, 535–539 (2003).CrossRefGoogle Scholar
  4. Çaykara, T., Demirci, S., Eroğlu, M. S., and Güven, O., Poly(ethylene oxide) and its blends with sodium alginate. Polymer, 46, 10750–10757 (2005).CrossRefGoogle Scholar
  5. Cekić, N. D., Milić, J. R., Savić, S. D., Savić, M. M., Jović, Z., and Daniels, R., Influence of the preparation procedure and chitosan type on physicochemical properties and release behavior of alginate-chitosan microparticles. Drug Dev. Ind. Pharm., 35, 1092–1102 (2009).PubMedCrossRefGoogle Scholar
  6. Dai, Y. N., Li, P., Zhang, J. P., Wang, A. Q., and Wei, Q., Swelling characteristics and drug delivery properties of nifedipine-loaded pH sensitive alginate-chitosan hydrogel beads. J. Biomed. Mater. Res. B Appl. Biomater., 86, 493–500 (2008).Google Scholar
  7. Dong, Y., Ruan, Y., Wang, H., Zhao, Y., and Bi, D., Studies on glass transition temperature of chitosan with four techniques. J. Appl. Polym. Sci., 93, 1553–1558 (2004).CrossRefGoogle Scholar
  8. Eskilson, C., Controlled release by microencapsulation. Manufacturing Chemist., 56, 33–39 (1985).Google Scholar
  9. Ferreira, A. P. and Almeida, A. J., Cross-linked alginategelatine beads: a new matrix for controlled release of pindolol. J. Control. Release, 97, 431–439 (2004).Google Scholar
  10. Gåserød, O., Smidsrød, O., and Skjåk-Bræk, G., Microcapsules of alginate-chitosan-I. A quantitative study of the interaction between alginate and chitosan. Biomaterials, 19, 1815–1825 (1998).PubMedCrossRefGoogle Scholar
  11. Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., and Thom, D., Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett., 32, 195–198 (1973).CrossRefGoogle Scholar
  12. Higuchi, T., Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 52, 1145–1149 (1963).PubMedCrossRefGoogle Scholar
  13. Huguet, M. L. and Dellacherie, E., Calcium alginate beads coated with chitosan: effect of the structure of encapsulated materials on their release. Process Biochem., 31, 745–751 (1996).CrossRefGoogle Scholar
  14. Iruín, A., Fernández-Arévalo, M., Alvarez-Fuéntes, J., Fini, A., and Holgado, M. A., Elaboration and “in vitro” characterization of 5-ASA beads. Drug Dev. Ind. Pharm., 31, 231–239 (2005).PubMedCrossRefGoogle Scholar
  15. Kim, C.-K. and Lee, E.-J., The controlled release of blue dextran from alginate beads. Int. J. Pharm., 79, 11–19 (1992).CrossRefGoogle Scholar
  16. Kim, S. J., Yoon, S. G., and Kim, S. I., Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly(diallydimethylammonium chloride). J. Appl. Polym. Sci., 91, 3705–3709 (2004).CrossRefGoogle Scholar
  17. Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., and Peppas, N. A., Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm., 15, 25–35 (1983).CrossRefGoogle Scholar
  18. Kramer, J. and Blume, H., Biopharmaceutical aspects of multiparticulates. In Ghebre-Sellasie, Y. (Ed.). Multiparticulate Oral Drug Delivery. Marcel Dekker, New York, pp. 307–332, (1994).Google Scholar
  19. Llabot, J. M., Manzo, R. H., and Allemandi, D. A., Drug release from carbomer:carbomer sodium salt matrices with potential use as mucoadhesive drug delivery system. Int. J. Pharm., 276, 59–66 (2004).PubMedCrossRefGoogle Scholar
  20. Maghsoodi, M., Physicomechanical properties of naproxenloaded microparticles prepared from Eudragit L100. AAPS PharmSciTech, 10, 120–128 (2009).PubMedCrossRefGoogle Scholar
  21. Martinsen, A., Skjåk-Bræk, G., and Smidsrød, O., Alginate as immobilization materials: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng., 33, 79–89 (1989).PubMedCrossRefGoogle Scholar
  22. Morris, E. R., Rees, D. A., Thom, D., and Boyd, J., Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation. Carbohydr. Res., 66, 145–154 (1978).CrossRefGoogle Scholar
  23. Murata, Y., Maeda, T., Miyamoto, E., and Kawashima, S., Preparation of chitosan-reinforced alginate gel beads — effects of chitosan on gel matrix erosion. Int. J. Pharm., 96, 139–145 (1993).CrossRefGoogle Scholar
  24. Neto, C. G. T., Giacometti, J. A., Job, A. E., Ferreira, F. C., Fonseca, J. L. C., and Pereira, M. R., Thermal Analysis of Chitosan Based Networks. Carbohydr. Polym., 62, 97–103 (2005).CrossRefGoogle Scholar
  25. Otero-Espinar, F. J., Anguiano-Igea, S., Blanco-Méndez, J., and Vila-Jato, J. L., Reduction in the ulcerogenicity of naproxen by complexation with β-cyclodextrin. Int. J. Pharm., 70, 35–41 (1991).CrossRefGoogle Scholar
  26. Peppas, N. A. and Sahlin, J. J., A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm., 57, 169–172 (1989).CrossRefGoogle Scholar
  27. Polk, A., Amsden, B., De Yao, K., Peng, T., and Goosen, M. F. A., Controlled release of albumin from chitosan-alginate microcapsules. J. Pharm. Sci., 83, 178–185 (1994).PubMedCrossRefGoogle Scholar
  28. Ribeiro, A. J., Neufeld, R. J., Arnaud, P., and Chaumeil, J. C., Microencapsulation of lipophilic drugs in chitosancoated alginate microspheres. Int. J. Pharm., 187, 115–123 (1999).PubMedCrossRefGoogle Scholar
  29. Simsek-Ege, F. A., Bond, G. M., and Stringer, J., Polyelectrolyte complex formation between alginate and chitosan as a function of pH. J. Appl. Polym. Sci., 88, 346–351 (2003).CrossRefGoogle Scholar
  30. Sweetman, S. C., Martindale: The Complete Drug Reference. Pharmaceutical Press, London, pp. 60, (2002).Google Scholar
  31. Tønnesen, H. H. and Karlsen, J., Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 28, 621–630 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Bojan Čalija
    • 1
  • Nebojsa Cekić
    • 2
  • Snežana Savić
    • 1
  • Danina Krajišnik
    • 1
  • Rolf Daniels
    • 3
  • Jela Milić
    • 1
  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyUniversity of BelgradeBelgradeSerbia
  2. 2.DCP HemigalR&D SectorLeskovacSerbia
  3. 3.Department of Pharmaceutical TechnologyUniversity of TubingenTubingenGermany

Personalised recommendations