Advertisement

Inhibitory effects of chlorogenic acid on aldose reductase activity in vitro and cataractogenesis in galactose-fed rats

  • Chan-Sik Kim
  • Junghyun Kim
  • Yun Mi Lee
  • Eunjin Sohn
  • Kyuhyung Jo
  • Jin Sook KimEmail author
Research Articles Drug Actions

Abstract

Chlorogenic acid (5-O-caffeoylquinic acid, CA), a phenolic compound found ubiquitously in plants, has antidiabetic effect in diabetic animal models. In this study, we investigated the inhibitory effect of CA on diabetic cataractogenesis. We evaluated the aldose reductase (AR) activity during cataract development in 50% galactose-fed rats, an animal model of sugar cataract. Galactose-fed rats were treated orally with CA (10 and 50 mg/kg body weight) once a day for 2 weeks. In vehicle-treated galactose-fed rats, lens opacity was increased, and lens fiber swelling and membrane rupture were observed. In addition, AR protein was highly expressed in lens epithelial cells and lens cortical fibers of galactose-fed rats. However, CA inhibited the rat AR activity in vitro, and the administration of CA prevented the development of sugar cataract through the inhibition of AR activity. These observations suggest that CA is useful for the treatment of sugar cataract.

Key words

Aldose reductase Chlorogenic acid Sugar cataract 

References

  1. Akagi, Y., Kador, P. F., and Kinoshita, J. H., Immunohistochemical localization for aldose reductase in diabetic lenses. Invest. Ophthalmol. Vis. Sci., 28, 163–167 (1987).PubMedGoogle Scholar
  2. Andrade-Cetto, A. and Wiedenfeld, H., Hypoglycemic effect of Cecropia obtusifolia on streptozotocin diabetic rats. J. Ethnopharmacol., 78, 145–149 (2001).PubMedCrossRefGoogle Scholar
  3. Ao, S., Shingu, Y., Kikuchi, C., Takano, Y., Nomura, K., Fujiwara, T., Ohkubo, Y., Notsu, Y., and Yamaguchi, I., Characterization of a novel aldose reductase inhibitor, FR74366, and its effects on diabetic cataract and neuropathy in the rat. Metabolism, 40, 77–87 (1991).PubMedCrossRefGoogle Scholar
  4. Costantino, L., Rastelli, G., Vianello, P., Cignarella, G., and Barlocco, D., Diabetes complications and their potential prevention: aldose reductase inhibition and other approaches. Med. Res. Rev., 19, 3–23 (1999).PubMedCrossRefGoogle Scholar
  5. Harries, W., Tsui, J., and Unakar, N. J., Ultrastructural cytochemistry: effect of Sorbinil on arylsulfatases in cataractous lenses. Curr. Eye Res., 4, 657–666 (1985).PubMedCrossRefGoogle Scholar
  6. Herrera-Arellano, A., Aguilar-Santamaría, L., García-Hernández, B., Nicasio-Torres, P., and Tortoriello, J., Clinical trial of Cecropia obtusifolia and Marrubium vulgare leaf extracts on blood glucose and serum lipids in type 2 diabetics. Phytomedicine, 11, 561–566 (2004).PubMedCrossRefGoogle Scholar
  7. Huang, R., Shi, F., Lei, T., Song, Y., Hughes, C. L., and Liu, G., Effect of the isoflavone genistein against galactoseinduced cataracts in rats. Exp. Biol. Med., 232, 118–125 (2007).Google Scholar
  8. Jung, H. A., Islam, M. D., Kwon, Y. S., Jin, S. E., Son, Y. K., Park, J. J., Sohn, H. S., and Choi, J. S., Extraction and identification of three major aldose reductase inhibitors from Artemisia montana. Food Chem. Toxicol., 49, 376–384 (2011).PubMedCrossRefGoogle Scholar
  9. Kador, P. F., Inoue, J., Secchi, E. F., Lizak, M. J., Rodriguez, L., Mori, K., Greentree, W., Blessing, K., Lackner, P. A., and Sato, S., Effect of sorbitol dehydrogenase inhibition on sugar cataract formation in galactose-fed and diabetic rats. Exp. Eye Res., 67, 203–208 (1998).PubMedCrossRefGoogle Scholar
  10. Kim, Y. S., Kim, N. H., Jung, D. H., Jang, D. S., Lee, Y. M., Kim, J. M., and Kim, J. S., Genistein inhibits aldose reductase activity and high glucose-induced TGF-beta2 expression in human lens epithelial cells. Eur. J. Pharmacol., 594, 18–25 (2008).PubMedCrossRefGoogle Scholar
  11. Kinoshita, J. H., Mechanisms initiating cataract formation. Proctor Lecture. Invest. Ophthalmol., 13, 713–724 (1974).PubMedGoogle Scholar
  12. Kinoshita, J. H., Kador, P., and Catiles, M., Aldose reductase in diabetic cataracts. JAMA, 246, 257–261 (1981).PubMedCrossRefGoogle Scholar
  13. Kono, Y., Kashine, S., Yoneyama, T., Sakamoto, Y., Matsui, Y., and Shibata, H., Iron chelation by chlorogenic acid as a natural antioxidant. Biosci. Biotechnol. Biochem., 62, 22–27 (1998).PubMedCrossRefGoogle Scholar
  14. Lee, A. Y., Chung, S. K., and Chung, S. S., Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc. Natl. Acad. Sci. U. S. A., 92, 2780–2784 (1995).PubMedCrossRefGoogle Scholar
  15. Liu, G., Hale, G. E., and Hughes, C. L., Galactose metabolism and ovarian toxicity. Reprod. Toxicol., 14, 377–384 (2000).PubMedCrossRefGoogle Scholar
  16. Lou, M. F., Dickerson, J. E., Jr., Garadi, R., and York, B. M., Jr., Glutathione depletion in the lens of galactosemic and diabetic rats. Exp. Eye Res., 46, 517–530 (1988).PubMedCrossRefGoogle Scholar
  17. Matsui, T., Nakamura, Y., Ishikawa, H., Matsuura, A., and Kobayashi, F., Pharmacological profiles of a novel aldose reductase inhibitor, SPR-210, and its effects on streptozotocin-induced diabetic rats. Jpn. J. Pharmacol., 64, 115–124 (1994).PubMedCrossRefGoogle Scholar
  18. Miwa, I., Kanbara, M., Wakazono, H., and Okuda, J., Analysis of sorbitol, galactitol, and myo-inositol in lens and sciatic nerve by high-performance liquid chromatography. Anal. Biochem., 173, 39–44 (1988).PubMedCrossRefGoogle Scholar
  19. Mizuno, K., Kato, N., Matsubara, A., Nakano, K., and Kurono, M., Effects of a new aldose reductase inhibitor, (2S, 4S)-6-fluoro-2′,5′-dioxospiro[chroman-4,4′-imidazolidine]-2-carboxamide (SNK-860), on the slowing of motor nerve conduction velocity and metabolic abnormalities in the peripheral nerve in acute streptozotocin-induced diabetic rats. Metabolism, 41, 1081–1086 (1992).PubMedCrossRefGoogle Scholar
  20. Nakai, N., Fujii, Y., Kobashi, K., and Nomura, K., Aldose reductase inhibitors: flavonoids, alkaloids, acetophenones, benzophenones, and spirohydantoins of chroman. Arch. Biochem. Biophys., 239, 491–496 (1985).PubMedCrossRefGoogle Scholar
  21. Oates, P. J. and Mylari, B. L., Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert Opin. Investig. Drugs, 8, 2095–2119 (1999).PubMedCrossRefGoogle Scholar
  22. Obrosova, I. G., Stevens, M. J., and Lang, H. J., Diabetesinduced changes in retinal NAD-redox status: pharmacological modulation and implications for pathogenesis of diabetic retinopathy. Pharmacology, 62, 172–180 (2001).PubMedCrossRefGoogle Scholar
  23. Patterson, J. W. and Bunting, K. W., Sugar cataracts, polyol levels and lens swelling. Doc. Ophthalmol., 20, 64–72 (1966).PubMedCrossRefGoogle Scholar
  24. Reddy, V. N., Schwass, D., Chakrapani, B., and Lim, C. P., Biochemical changes associated with the development and reversal of galactose cataracts. Exp. Eye Res., 23, 483–493 (1976).PubMedCrossRefGoogle Scholar
  25. Rodriguez de Sotillo, D. V. and Hadley, M., Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J. Nutr. Biochem., 13, 717–726 (2002).PubMedCrossRefGoogle Scholar
  26. Simard-Duquesne, N., Greselin, E., Dubuc, J., and Dvornik, D., The effects of a new aldose reductase inhibitor (tolrestat) in galactosemic and diabetic rats. Metabolism, 34, 885–892 (1985).PubMedCrossRefGoogle Scholar
  27. Terashima, H., Hama, K., Yamamoto, R., Tsuboshima, M., Kikkawa, R., Hatanaka, I., and Shigeta, Y., Effects of a new aldose reductase inhibitor on various tissues in vitro. J. Pharmacol. Exp. Ther., 229, 226–230 (1984).PubMedGoogle Scholar
  28. Tomlinson, D. R., Stevens, E. J., and Diemel, L. T., Aldose reductase inhibitors and their potential for the treatment of diabetic complications. Trends Pharmacol. Sci., 15, 293–297 (1994).PubMedCrossRefGoogle Scholar
  29. Unakar, N. J. and Tsui, J. Y., Inhibition of galactose-induced alterations in ocular lens with sorbinil. Exp. Eye Res., 36, 685–694 (1983).PubMedCrossRefGoogle Scholar
  30. Unakar, N. J., Harries, W., and Tsui, J., Acid phosphatase II. Cytochemical localization in lenses of normal and galactose-fed rats. Exp. Eye Res., 40, 117–126 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Chan-Sik Kim
    • 1
    • 2
  • Junghyun Kim
    • 1
  • Yun Mi Lee
    • 1
  • Eunjin Sohn
    • 1
  • Kyuhyung Jo
    • 1
  • Jin Sook Kim
    • 1
    • 3
    Email author
  1. 1.Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated ResearchKorea Institute of Oriental MedicineDaejeonKorea
  2. 2.Department of PhysiologyAjou University School of MedicineSuwonKorea
  3. 3.Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated ResearchKorea Institute of Oriental Medicine (KIOM)DaejeonKorea

Personalised recommendations