Archives of Pharmacal Research

, Volume 34, Issue 5, pp 767–774 | Cite as

Effects of silymarin nanoemulsion against carbon tetrachloride-induced hepatic damage

  • Rabea Parveen
  • Sanjula Baboota
  • Javed Ali
  • Alka Ahuja
  • Suruchi S. Vasudev
  • Sayeed Ahmad
Research Articles Drug Development

Abstract

Silymarin is a complex mixture of four flavonolignan isomers (silybin, isosilybin, silydianin and silychristin) obtained from ‘milk thistle’ (Silybum marianum). This plant compound is used almost exclusively for hepatoprotection. Because of its low and poor oral bioavailability, silymarin was formulated as a nanoemulsion to increase its solubility (and so its oral bioavailability) as well as therapeutic activity. The present study assessed the hepatoprotective activity on Wistar rats by determining biochemical parameters and histopathological properties of the nanoemulsion formulation of silymarin against carbon tetrachloride (CCl4)-induced hepatotoxicity. Hepatoprotective activity was evaluated by the activity of serum alkaline phosphatase, alanine transaminase and aspartate transaminase; antioxidative defence markers (concentration of reduced glutathione); oxidative stress parameter (thiobarbituric acid reactive substances) and liver histopathology. The nanoemulsion-treated group showed significant decreases in glutamate oxaloacetate transaminase, pyruvate transaminase, alkaline phosphotase, total bilirubin and tissue lipid peroxides and increased total protein, albumin, globulin and tissue glutathione as compared to toxicant. The results indicate an excellent potential of the nanoemulsion formulation for the reversal of CCl4-induced liver toxicity in rats as compared to standard silymarin.

Key words

Silymarin Nanoemulsion Carbon tetrachloride Hepatic damage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attama, A. A., Nzekwe, I. T., Nnamani, P. O., Adikwu, M. U., and Onugu, C. O., The use of solid self-emulsifying systems in the delivery of diclofenac. Int. J. Pharm., 262, 23–28 (2003).PubMedCrossRefGoogle Scholar
  2. Barbarino, F., Neumann, E., Deaciuc, I., Ghelberg, N. W., Suciu, A., Cotutiu, C., Racovitǎa, L., Stroilǎa, C., Nagy, S., Pǎarǎau, N., Toader, S., and Brilinschi, C., Effect of silymarin on experimental liver lesions. Med. Interne, 19, 347–357 (1981).PubMedGoogle Scholar
  3. Bessey, O. A., Lowry, O. H., and Brock, M. J., A method for the rapid determination of alkaline phosphates with five cubic millimeters of serum. J. Biol. Chem., 164, 321–329 (1964).Google Scholar
  4. Comoglio, A., Tomasi, A., Malandrino, S., Poli, G., and Albano, E., Scavenging effect of silipide, a new silybinphospholipid complex, on ethanol-derived free radicals. Biochem. Pharmacol., 50, 1313–1316 (1995).PubMedCrossRefGoogle Scholar
  5. Comporti, M., Maellaro, E., Del Bello, B., and Casini, A. F., Glutathione depletion: its effects on other antioxidant systems and hepatocellular damage. Xenobiotica, 21, 1067–1076 (1991).PubMedCrossRefGoogle Scholar
  6. Constantinides, P. P., Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm. Res., 12, 1561–1572 (1995).PubMedCrossRefGoogle Scholar
  7. Davila, J. C., Lenherr, A., and Acosta, D., Protective effect of flavonoids on drug-induced hepatotoxicity in vitro. Toxicology, 57, 267–286 (1989).PubMedCrossRefGoogle Scholar
  8. Desplaces, A., Choppin, J., Vogel, G., and Trost, W., The effects of silymarin on experimental phalloidine poisoning. Arzneimittelforschung, 25, 89–96 (1975).PubMedGoogle Scholar
  9. Ellman, G. L., Tissue sulfhydryl groups. Arch. Biochem. Biophys., 82, 70–77 (1959).PubMedCrossRefGoogle Scholar
  10. Fang, Y. Z., Yang, S., and Wu, G., Free radicals, antioxidants, and nutrition. Nutrition, 18, 872–879 (2002).PubMedCrossRefGoogle Scholar
  11. Floersheim, G. L., Eberhard, M., Tschumi, P., and Duckert, F., Effects of penicillin and silymarin on liver enzymes and blood clotting factors in dogs given a boiled preparation of Amanita phalloides. Toxicol. Appl. Pharmacol., 46, 455–462 (1978).PubMedCrossRefGoogle Scholar
  12. Flora, K., Hahn, M., Rosen, H., and Benner, K., Milk thistle (Silybum marianum) for the therapy of liver disease. Am. J. Gastroenterol., 93, 139–143 (1998).PubMedCrossRefGoogle Scholar
  13. Gadetta, V., Bombardelli, E., and Pifferi, G., Complexes of flavanolignans with phospholipids, preparations thereof and associated pharmaceutical compositions. U. S. Patent, 4764508 (1988).Google Scholar
  14. Galighter, A. E. and Koyloff, E. N., Essential of Practical Microtechnique, Lea and Febiger, Philadelphia, (1971).Google Scholar
  15. Giacomelli, S., Gallo, D., Apollonio, P., Ferlini, C., Distefano, M., Morazzoni, P., Riva, A., Bombardelli, E., Mancuso, S., and Scambia, G., Silybin and its bioavailable phospholipid complex (IdB1016) potentiate in vitro and in vivo activity of cisplatin. Life Sci., 70, 1447–1459 (2002).PubMedCrossRefGoogle Scholar
  16. Hall, P. D., Plummer, J. L., Ilsley, A. H., and Cousins, M. J., Hepatic fibrosis and cirrhosis after chronic administration of alcohol and “low-dose” carbon tetrachloride vapor in the rat. Hepatology, 13, 815–819 (1991).PubMedCrossRefGoogle Scholar
  17. Javed, S., Kohli, K., and Ali, M., Patented bioavailability enhancement techniques of silymarin. Recent Pat. Drug Deliv. Formul., 4, 145–152 (2010).PubMedCrossRefGoogle Scholar
  18. Johnston, D. E. and Kroening, C., Mechanism of early carbon tetrachloride toxicity in cultured rat hepatocytes. Pharmacol. Toxicol., 83, 231–239 (1998).PubMedCrossRefGoogle Scholar
  19. Kaplowitz N., Aw, T. Y., Simon, F. R., and Stolz, A., Druginduced hepatotoxicity. Ann. Intern. Med., 104, 826–839 (1986).PubMedGoogle Scholar
  20. Khandavilli, S. and Panchagnula, R., Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J. Invest. Dermatol., 127, 154–162 (2007).PubMedCrossRefGoogle Scholar
  21. Kingsley, S. R. and Frankel, S. J., The determination of serum total protein albumin and globulin by the biuret reaction. J. Biol. Chem., 128, 131–137 (1939).Google Scholar
  22. Kogan, A., Aserin, A., and Garti, N., Improved solubilization of carbamazepine and structural transitions in nonionic microemulsions upon aqueous phase dilution. J. Colloid Interface Sci., 315, 637–647 (2007).PubMedCrossRefGoogle Scholar
  23. Kosina, P., Kren, V., Gebhardt, R., Grambal, F., Ulrichová, J., and Walterová, D., Antioxidant properties of silybin glycosides. Phytother. Res., 16, S33–S39 (2002).PubMedCrossRefGoogle Scholar
  24. Lauterburg, B. H., Analgesics and glutathione. Am. J. Ther., 9, 225–233 (2002).PubMedCrossRefGoogle Scholar
  25. Lawrence, M. J. and Rees, G. D., Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev., 45, 89–121 (2000).PubMedCrossRefGoogle Scholar
  26. Lee, M. H., Lin, H. Y., Chen, H. C., and Thomas, J. L., Ultrasound mediates the release of curcumin from microemulsions. Langmuir, 4, 1707–1713 (2008).CrossRefGoogle Scholar
  27. Madaus, R., Halbach, G., and Trost, W., Salt of silymarin group with aminopolyhydroxy alcohols. U. S. Patent, 3994925 (1976).Google Scholar
  28. Mallory, H. T. and Evelyn, K. A., The determination of bilirubin with photoelectric colorimeter. J. Biol. Chem., 119, 481–490 (1937).Google Scholar
  29. Mereish, K. A., Bunner, D. L., Ragland, D. R., and Creasia, D. A., Protection against microcystin-LR-induced hepatotoxicity by silymarin: biochemistry, histopathology, and lethality. Pharm. Res., 8, 273–277 (1991).PubMedCrossRefGoogle Scholar
  30. Morazzoni, P. and Bombardelli, E., Silybum marianum (Carduus marianus) Fitoterapia, 66, 3–42 (1994).Google Scholar
  31. Muriel, P. and Mourelle, M., Prevention by silymarin of membrane alterations in acute CCl4 liver damage. J. Appl. Toxicol., 10, 275–279 (1990).PubMedCrossRefGoogle Scholar
  32. Muriel, P., Garciapiña, T., Perez-Alvarez, V., and Mourelle, M., Silymarin protects against paracetamol-induced lipid peroxidation and liver damage. J. Appl. Toxicol., 12, 439–442 (1992).PubMedCrossRefGoogle Scholar
  33. Najafzadeh, H., Jalali, M. R., Morovvati, H., and Taravati, F., Comparison of the prophylactic effect of silymarin and deferoxamine on iron overload-induced hepatotoxicity in rat. J. Med. Toxicol., 6, 22–26 (2010).PubMedCrossRefGoogle Scholar
  34. Pepping, J., Milk thistle: Silybum marianum. Am. J. Health Syst. Pharm., 56, 1195–1197 (1999).PubMedGoogle Scholar
  35. Polyak, S. J., Morishima, C., Lohmann, V., Pal, S., Lee, D. Y., Liu, Y., Graf, T. N., and Oberlies, N. H., Identification of hepatoprotective flavonolignans from silymarin. Proc. Natl. Acad. Sci. U. S. A., 107, 5995–5999 (2010).PubMedCrossRefGoogle Scholar
  36. Porter, W. R. and Neal, R. A., Metabolism of thioacetamide and thioacetamide S-oxide by rat liver microsomes. Drug Metab. Dispos., 6, 379–388 (1978).PubMedGoogle Scholar
  37. Pouton, C. W. and Porter, C. J. H., Formulation of lipidbased delivery systems for oral administration: materials, methods and strategies. Adv. Drug Deliv. Rev., 60, 625–637 (2008).PubMedCrossRefGoogle Scholar
  38. Pradhan, S. C. and Girish, C., Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J. Med. Res., 124, 491–504 (2006).PubMedGoogle Scholar
  39. Rainone, F., Milk thistle. Am. Fam. Physician, 72, 1285–1288 (2005).PubMedGoogle Scholar
  40. Recknagel, R. O., Glende, E. A. Jr., Dolak, J. A., and Waller, R. L., Mechanisms of carbon tetrachloride toxicity. Pharmacol. Ther., 43, 134–154 (1989).CrossRefGoogle Scholar
  41. Reitman, S. and Frankel, S., A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 28, 56–63 (1957).PubMedGoogle Scholar
  42. Schriewer, H. and Weinhold, F., The influence of silybin from Silybum marianum (L.) Gaertn. on in vitro phosphatidyl choline biosynthesis in rat livers. Arzneimittelforschung, 29, 791–792 (1979).PubMedGoogle Scholar
  43. Sedlak, J. and Lindsay, R. H., Estimation of total, proteinbound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 25, 192–205 (1968).PubMedCrossRefGoogle Scholar
  44. Siegers, C. P., Frühling, A., and Younes, M., Influence of dithiocarb, (+)-catechin and silybine on halothane hepatotoxicity in the hypoxic rat model. Acta Pharmacol. Toxicol. (Copenh), 53, 125–129 (1983).CrossRefGoogle Scholar
  45. Srivastava, S. P., Chen, N. Q., and Holtzman, J. L., The in vitro NADPH-dependent inhibition by CCl4 of the ATPdependent calcium uptake of hepatic microsomes from male rats. Studies on the mechanism of the inactivation of the hepatic microsomal calcium pump by the CCl3 radical. J. Biol. Chem., 265, 8392–8399 (1990).PubMedGoogle Scholar
  46. Thakur, S. K., Silymarin-A hepatoprotective agent. Gastroenterol. Today, 6, 78–82 (2002).Google Scholar
  47. Tiwari, S. B. and Amiji, M. M., Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. J. Nanosci. Nanotechnol., 6, 3215–3221 (2006).PubMedCrossRefGoogle Scholar
  48. Valenzuela, A., Guerra, R., and Garrido, A., Silybin dihemisuccinate protects rat erythrocytes against phenylhydrazine-induced lipid peroxidation and hemolysis. Planta Med., 53, 402–405 (1987).PubMedCrossRefGoogle Scholar
  49. Vyas, T. K., Shahiwala,, A., and Amiji M. M., Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int. J. Pharm., 347, 93–101 (2008).PubMedCrossRefGoogle Scholar
  50. Wachter, W. and Zaeske, H., Process for the manufacture of flavanolignan preparation with improve release and absorbability, compositions obtainable thereby and their use for the preparation of pharmaceuticals. U. S. Patent, 6020384 (2000).Google Scholar
  51. Wang, M., Grange, L. L., and Tao, J., Hepatoprotective properties of Silybum marianum herbal formulation on ethanol-induced liver damage. Fitoterapia, 67, 167–171 (1996).Google Scholar
  52. Woo, J. S., Kim, T. S., Park, J. H., and Chi, S. C., Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Arch. Pharm. Res., 30, 82–89 (2007).PubMedCrossRefGoogle Scholar
  53. Wu, W., Wang, Y., and Que, L., Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur. J. Pharm. Biopharm., 63, 288–294 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Rabea Parveen
    • 1
  • Sanjula Baboota
    • 1
  • Javed Ali
    • 1
  • Alka Ahuja
    • 1
  • Suruchi S. Vasudev
    • 2
  • Sayeed Ahmad
    • 2
  1. 1.Department of PharmaceuticsFaculty of PharmacyNew DelhiIndia
  2. 2.Bioactive Natural Product Laboratory, Department of Pharmacognosy and PhytochemistryFaculty of PharmacyNew DelhiIndia

Personalised recommendations