Archives of Pharmacal Research

, Volume 34, Issue 2, pp 203–210 | Cite as

Simultaneous determination of liquiritin, hesperidin, and glycyrrhizin by HPLC-photodiode array detection and the anti-inflammatory effect of Pyungwi-san

  • Chang Seob Seo
  • Jin-Ah Lee
  • Dayoung Jung
  • Ho-Young Lee
  • Jun Kyoung Lee
  • Hyekyung Ha
  • Mee-Young Lee
  • Hyeun Kyoo Shin
Research Articles Drug Discovery and Development

Abstract

A high-performance liquid chromatographic method was developed and validated to determine liquiritin, hesperidin, and glycyrrhizin levels in a traditional Korean medicine, Pyungwi-san (PWS). Reverse-phase chromatography using a C18 column operating at 40oC, and photodiode array detection at 254 nm and 280 nm, were used for quantification of the three marker components of PWS. The mobile phase using gradient flow consisted of two solvent systems. Solvent A was 1.0% (v/v) aqueous acetic acid and solvent B was acetonitrile with 1.0% (v/v) acetic acid. Calibration curves were acquired with r 2 > 0.9999, and the relative standard deviation values (%) for intra- and inter-day precision were both less than 4.0%. The recovery of each compound was in the range 97.33–110.72%, with an relative standard deviation less than 6.0%. To provide information on the biological activity of PWS, anti-inflammatory action was evaluated. Production of nitric oxide and prostaglandin E2 were measured using the Griess reagent and enzyme-linked immunosorbent assay, respectively. PWS showed inhibitory effect on prostaglandin E2 production in LPS-treated RAW 264.7 cells.

Key words

Glycyrrhizin Hesperidin HPLC-PDA Liquiritin Pyungwi-san Simultaneous determination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltina, L. A., Chemical modification of glycyrrhzic acid as a route to new bioactive compounds for medicine. Curr. Med. Chem., 10, 155–171 (2003).PubMedGoogle Scholar
  2. Choi, I. Y., Kim, S. J., Jeong, H. J., Park, S. H., Song, Y. S., Lee, J. H., Kang, T. H., Park, J. H., Hwang, G. S., Lee, E. J., Hong, S. H., Kim, H. M., and Um, J. Y., Hesperidin inhibits expression of hypoxia inducible factor-1 alpha and inflammatory cytokine production from mast cells. Mol. Cell. Biochem., 305, 153–161 (2007).PubMedCrossRefGoogle Scholar
  3. Funk, J. L., Frye, J. B., Oyarzo, J. N., and Timmermann, B. N., Comparative effects of two gingerol-containing Zingiber officinale extracts on experimental rheumatoid arthritis. J. Nat. Prod., 72, 403–407 (2009).PubMedCrossRefGoogle Scholar
  4. Galati, E. M., Monforte, M. T., Kirjavainen, S., Forestieri, A. M., Trovato, A., and Tripodo, M. M., Biological effects of hesperidin, a citrus flavonoid. (Note I): anti-inflammatory and analgesic activity. Farmaco, 40, 709–712 (1994).PubMedGoogle Scholar
  5. Gambero, A., Becker, T. L., Gurgueira, S. A., Benvengo, Y. H., Ribeiro, M. L., de Mendonca, S., and Pedrazzoli, J. Jr., Acute inflammatory response induced by Helicobacter pylori in the rat air pouch. FEMS Immunol. Med. Microbiol., 38, 193–198 (2003).PubMedCrossRefGoogle Scholar
  6. Harris, S. G., Padilla, J., Koumas, L., Ray, D., and Phipps, R. P., Prostaglandins as modulators of immunity. Trends Immunol., 23, 144–150 (2002).PubMedCrossRefGoogle Scholar
  7. Heo, J., Dongeuibogam. Namsandang, Seoul, pp. 435, (1994).Google Scholar
  8. Hong, M. H., Kim, J. H., Bae, H., Lee, N. Y., Shin, Y. C., Kim, S. H., and Ko, S. G., Atractylodes japonica Koidzumi inhibits the production of proinflammatory cytokines through inhibition of the NF-kappaB/IkappaB signal pathway in HMC-1 human mast cells. Arch. Pharm. Res., 33, 843–851 (2010).PubMedCrossRefGoogle Scholar
  9. Jayaprakasam, B., Doddaga, S., Wang, R., Holmes, D., Goldfarb, J., and Li, X. M., Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. J. Agric. Food Chem., 57, 820–825 (2009).PubMedCrossRefGoogle Scholar
  10. Jung, H. W., Yoon, C. H., Park, K. M., Han H. S., and Park, Y. K., Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. Food Chem. Toxicol., 47, 1190–1197 (2009).PubMedCrossRefGoogle Scholar
  11. Kim, K. S., Rhee, H. I., Park, E. K., Jung, K., Jeon, H. J., Kim, J. H., Yoo, H., Han, C. K., Cho, Y. B., Ryu, C. J., Yang, H. I., and Yoo, M. C., Anti-inflammatory effects of Radix Gentianae Macrophyllae (Qinjiao), Rhizoma Coptidis (Huanglian) and Citri Unshiu Pericarpium (Wenzhou migan) in animal models. Chin. Med., 2, 3–10 (2008).Google Scholar
  12. Kim, N. Y. and Ryu, J. H., Butanolides from Machilus thunbergii and their inhibitory activity on nitric oxide synthesis in activated macrophages. Phytother. Res., 17, 372–375 (2003).PubMedCrossRefGoogle Scholar
  13. Kim, Y. W., Ki, S. H., Lee, J. R., Lee, S. J., Kim, C. W., Kim, S. C., and Kim, S. G., Liquiritigenin, an aglycone of liquiritin in Glycyrrhizae radix, prevents acute liver injuries in rats induced by acetaminophen with or without buthionine sulfoximine. Chem. Biol. Interact., 161, 125–138 (2006).PubMedCrossRefGoogle Scholar
  14. Lee, T. Y., Lee, K. C., Chen, S. Y., and Chang, H. H., 6-Gingerol inhibits ROS and iNOS through the suppression of PKCalpha and NF-kappaB pathways in lipopolysaccharidestimulated mouse macrophages. Biochem. Biophys. Res. Commun., 382, 134–139 (2009).PubMedCrossRefGoogle Scholar
  15. Lin, Y. R., Chen, H. H., Ko, C. H., and Chan, M. H., Effects of honokiol and magnolol on acute and inflammatory pain models in mice. Life Sci., 81, 1071–1078 (2007).PubMedCrossRefGoogle Scholar
  16. Lin, Y. R., Chen, H. H., Lin, Y. C., Ko, C. H., and Chan, M. H., Antinociceptive actions of honokiol and magnolol on glutamatergic and inflammatory pain. J. Biomed. Sci., 16, 94 (2009).PubMedCrossRefGoogle Scholar
  17. Lundberg, I. E., The role of cytokines, chemokines, and adhesion molecules in the pathogenesis of idiopathic inflammatory myopathies. Curr. Rheumatol. Rep., 2, 216–224 (2000).PubMedCrossRefGoogle Scholar
  18. McCann, S. M., Mastronardi, C., de Laurentiis, A., and Rettori, V., The nitric oxide theory of aging revisited. Ann. N. Y. Acad. Sci., 1057, 64–84 (2005).PubMedCrossRefGoogle Scholar
  19. Menegazzi, M., Di Paola, R., Mazzon, E., Genovese, T., Crisafulli, C., Dal Bosco, M., Zou, Z., Suzuki, H., and Cuzzocrea, S., Glycyrrhizin attenuates the development of carrageenan-induced lung injury in mice. Pharmacol. Res., 58, 22–31 (2008).PubMedCrossRefGoogle Scholar
  20. Resch, M., Steigel, A., Chen, Z. L., and Bauer, R., 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea. J. Nat. Prod., 61, 347–350 (1998).PubMedCrossRefGoogle Scholar
  21. Riedlinger, J. E., Tan, P. W., and Lu, W., Ping wei san, a Chinese medicine for gastrointestinal disorders. Ann. Pharmacother., 35, 228–235 (2001).PubMedCrossRefGoogle Scholar
  22. Salvemini, D., Wang, Z. Q., Xyatt, P. S., Bourdon, D. M., Marino, M. H., Manning, P. T., and Currie, M. G., Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br. J. Pharmacol., 118, 829–838 (1996).PubMedGoogle Scholar
  23. Schröfelbauer, B., Raffetseder, J., Hauner, M., Wolkerstorfer, A., Ernst, W., and Szolar, O. H., Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signalling. Biochem. J., 421, 473–482 (2009).PubMedCrossRefGoogle Scholar
  24. Walsh, L. J., Mast cells and oral inflammation. Crit. Rev. Oral. Biol. Med., 14, 188–198 (2003).PubMedCrossRefGoogle Scholar
  25. Winter, C. A., Risely, E. A., and Nuss, G. W., Carrageen-ininduced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc. Soc. Exp. Biol. Med., 111, 544–547 (1962).PubMedGoogle Scholar
  26. Yamauchi, Y., Ueda, J., and Ohsawa, K., A Simultaneous determination of various main components in oriental pharmaceutical decoction “heii-san” by ion-pair high-performance liquid chromatography. Yakugaku Zasshi, 116, 776–782 (1996).PubMedGoogle Scholar
  27. Yeh, C. C., Kao, S. J., Lin, C. C., Wang, S. D., Liu, C. J., and Kao, S. T., The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sci., 80, 1821–1831 (2007).PubMedCrossRefGoogle Scholar
  28. Yoshida, T., Abe, K., Ikeda, T., Matsushita, T., Wake, K., Sato, T., Sato, T., and Inoue, H., Inhibitory effect of glycyrrhizin on lipopolysaccharide and d-galactosamine-induced mouse liver injury. Eur. J. Pharmacol., 576, 136–142 (2007).PubMedCrossRefGoogle Scholar
  29. Yoshikawa, Y., Matsui, H., Kawamoto, N., Umemoto, K., Oku, M., Koizumi, J., Yamao, S., Kuriyama, H., Nakano, N., Hozumi, S., and Fukui, I. H., Effects of glycyrrhizin on immune-mediated cytotoxicity. J. Gastroenterol. Hepatol., 12, 243–248 (1997).PubMedCrossRefGoogle Scholar
  30. Zhang, H., Shen, P., and Cheng, Y., Identification and determination of the major constituents in traditional Chinese medicine Si-Wu-Tang by HPLC coupled with DAD and ESI-MS. J. Pharm. Biomed. Anal., 34, 705–713 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Chang Seob Seo
    • 1
  • Jin-Ah Lee
    • 1
  • Dayoung Jung
    • 1
  • Ho-Young Lee
    • 1
  • Jun Kyoung Lee
    • 1
  • Hyekyung Ha
    • 1
  • Mee-Young Lee
    • 1
  • Hyeun Kyoo Shin
    • 1
  1. 1.Herbal Medicine EBM Research CenterKorea Institute of Oriental MedicineDaejeonKorea

Personalised recommendations