Advertisement

Archives of Pharmacal Research

, Volume 34, Issue 1, pp 119–125 | Cite as

Effects of rutaecarpine on the metabolism and urinary excretion of caffeine in rats

  • Keumhan Noh
  • Young Min Seo
  • Sang Kyu Lee
  • Sudeep R. Bista
  • Mi Jeong Kang
  • Yurngdong Jahng
  • Eunyoung Kim
  • Wonku KangEmail author
  • Tae Cheon JeongEmail author
Drug Actions

Abstract

Although rutaecarpine, an alkaloid originally isolated from the unripe fruit of Evodia rutaecarpa, has been reported to reduce the systemic exposure of caffeine, the mechanism of this phenomenon is unclear. We investigated the microsomal enzyme activity using hepatic S-9 fraction and the plasma concentration-time profiles and urinary excretion of caffeine and its major metabolites after an oral administration of caffeine in the presence and absence of rutaecarpine in rats. Following oral administration of 80 mg/kg rutaecarpine for three consecutive days, caffeine (20 mg/kg) was given orally. Plasma and urine were collected serially for up to 24 h and the plasma and urine concentrations of caffeine and its metabolites were measured, and compared with those in control rats. The areas under the curve of both caffeine and its three major metabolites (paraxanthine, theophylline, and theobromine) were significantly reduced by rutaecarpine, indicating that caffeine was rapidly converted into the desmethylated metabolites, and that those were also quickly transformed into further metabolites via the hydroxyl metabolites due to the remarkable induction of CYP1A2 and 2E1. The significant induction of ethoxyresorufin O-deethylase, pentoxyresorufin O-depentylase, and p-nitrophenol hydroxylase strongly supported the decrease in caffeine and its major metabolites in plasma, as well as in urine. These results clearly suggest that rutaecarpine increases the metabolism of caffeine, theophylline, theobromine, and paraxanthine by inducing CYP1A2 and CYP2E1 in rats.

Key words

Caffeine Metabolites Rutaecarpine Cytochrome P450 Rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bechtel, Y. C., Bonaiti-Pellie, C., Poisson, N., Magnette, J., and Bechtel, P. R., A population and family study of Nacetyltransferase using caffeine urinary metabolites. Clin. Pharmacol. Ther., 54, 134–141 (1993).PubMedCrossRefGoogle Scholar
  2. Bista, S. R., Lee, S. K., Thapa, D., Kang, M. J., Seo, Y. M., Kim, J. H., Kim, D. H., Jahng, Y., Kim, J. A., and Jeong, T. C., Effects of oral rutaecarpine on the pharmacokinetics of intravenous chlorzoxazone in rats. Toxicol. Res., 24, 195–199 (2008).Google Scholar
  3. Blank, J. A., Tucker, A. N., Sweatlock, J., Gasiewicz, T. A., and Luster, M. I., α-Naphthoflavone antagonism of 2,3,7,8-tetrachlorodibenzo-p-dioxin induced murine ethoxyresorufin O-deethylase activity and immunosuppression. Mol. Pharmacol., 32, 169–172 (1987).PubMedGoogle Scholar
  4. Caubet, M. S., Comte, B., and Brazier, J. L., Determination of urinary 13C-caffeine metabolites by liquid chromatography-mass spectrometry: the use of metabolic ratios to assess CYP1A2 activity. J. Pharm. Biomed. Anal., 34, 379–389 (2004).PubMedCrossRefGoogle Scholar
  5. Chen, L., Bondoc, F. Y., Lee, M. J., Hussin, A. H., Thomas, P. E., and Yang, C. S., Caffeine induces cytochrome P4501A2: induction of CYP1A2 by tea in rats. Drug Metab. Dispos., 24, 529–533 (1996).PubMedGoogle Scholar
  6. Chiou, W. F., Liao, J. F., and Chen, C. F., Comparative study of the vasodilatory effects of three quinazoline alkaloids isolated from Evodia rutaecarpa. J. Nat. Prod., 59, 374–378 (1996).PubMedCrossRefGoogle Scholar
  7. Chiou, W. L., Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level — time curve. J. Pharmacokinet. Biopharm., 6, 539–546 (1978).PubMedCrossRefGoogle Scholar
  8. Jan, W. C., Lin, L. C, Chen, C. F., and Tsai, T. H., Herb-drug interaction of Evodia rutaecarpa extract on the pharmacokinetics of theophylline in rats. J. Ethnopharmacol., 102, 440–445 (2005).PubMedCrossRefGoogle Scholar
  9. Koop, D. R., Hydroxylation or p-nitrophenol by rabbit ethanol inducible cytochrome P-450 isozyme 3a. Mol. Pharmacol., 29, 399–404 (1986).PubMedGoogle Scholar
  10. Lee, S. H., Kim, S. I., Park, J. G., Lee, E. S., and Jahng, Y., A simple synthesis of rutaecarpine. Heterocycles, 55, 1555–1559 (2001).CrossRefGoogle Scholar
  11. Lee, S. K., Kim, N. H., Lee, J., Kim, D. H., Lee, E. S., Choi, H. G., Chang, H. W., Jahng, Y., and Jeong, T. C., Induction of cytochrome P450s by rutaecarpine and metabolism of rutaecarpine by cytochrome P450s. Planta Med., 70, 753–757 (2004a).PubMedCrossRefGoogle Scholar
  12. Lee, S. K., Lee, J., Lee, E. S., Jahng, Y., Kim, D. H., and Jeong, T. C., Characterization of in virto metabolites of rutaecarpine in rat liver microsomes using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 18, 1073–1080 (2004b).PubMedCrossRefGoogle Scholar
  13. Lee, S. K., Lee, D. W., Jeon, T. W., Jin, C. H., Kim, G. H., Jun, I. H., Lee, D. J., Kim, S. I., Kim, D. H., Jahng, Y., and Jeong, T. C., Characterization of the phase 2 metabolites of rutaecarpine in rats by liquid chromatography-electrospray ionization-tandem mass spectrometry. Xenobiotica, 35, 1135–1145 (2005).PubMedCrossRefGoogle Scholar
  14. Lee, S. K., Bista, S. R., Jeong, H. M., Kim, D. H., Kang, M. J., Jahng, Y., and Jeong, T. C., The effects of rutaecarpine on the pharmacokinetics of acetaminophen in rats. Arch. Pharm. Res., 30, 1629–1634 (2007).PubMedCrossRefGoogle Scholar
  15. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265–275 (1951).PubMedGoogle Scholar
  16. Lubet, R. A., Meyer, R. T., Cameron, J. W., Nims, R. W., Burke, M. D., Wolff, T., and Guengerich, F. P., Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome(s) P-450 by phenobarbital and other xenobiotics in the rat. Arch. Biochem. Biophys., 238, 43–48 (1985).PubMedCrossRefGoogle Scholar
  17. Moon, T. C., Murakami, M., Kudo, I., Son, K. H., Kim, H. P., Kang, S. S., and Chang, H. W., A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm. Res., 48, 621–625 (1999).PubMedCrossRefGoogle Scholar
  18. Nash, T., The colorimetrical estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J., 55, 416–421 (1953).PubMedGoogle Scholar
  19. Tsai, T. H., Chang, C. H., and Lin, L. C., Effects of Evodia rutaecarpa and rutaecarpine on the pharmacokinetics of caffeine in rats. Planta Med., 71, 640–645 (2005).PubMedCrossRefGoogle Scholar
  20. Ueng, Y. F., Wang, J. J., Lin, L. C., Park, S. S., and Chen, C. F., Induction of cytochrome P450-dependent monooxygenase in mouse liver and kidney by rutaecarpine, an alkaloid of the herbal drug Evodia rutaecarpa. Life Sci., 70, 207–217 (2001).PubMedCrossRefGoogle Scholar
  21. Ueng, Y. F., Don, M. J., Peng, H. C., Wang, S. Y., Wang, J. J., and Chen, C. F., Effects of Wu-chu-yu-tang and its compound herbs on drug-metabolizing enzymes. Jpn. J. Pharmacol., 89, 267–273 (2002).PubMedCrossRefGoogle Scholar
  22. Ueng, Y. F., Tsai, T. H., Don, M. J., Chen, R. M., and Chen, T. L., Alteration of the pharmacokinetics of theophylline by rutaecarpine, an alkaloid of the medicinal herb Evodia rutaecarpa, in rats. J. Pharm. Pharmacol., 57, 227–232 (2005).PubMedCrossRefGoogle Scholar
  23. Woo, H. G., Lee, C. H., Noh, M. S., Lee, J. J., Jung, Y. S., Baik, E. J., Moon, C. H., and Lee, S. H., Rutaecarpine, a quinazolinocarboline alkaloid, inhibits prostaglandin production in RAQ264.7 macrophages. Planta Med., 67, 505–509 (2001).PubMedCrossRefGoogle Scholar
  24. Yuan, R., Madani, S., Wei, X. X., Reynolds, K., and Huang, S. M., Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab. Dispos., 30, 1311–1319 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Keumhan Noh
    • 1
  • Young Min Seo
    • 1
  • Sang Kyu Lee
    • 1
  • Sudeep R. Bista
    • 1
  • Mi Jeong Kang
    • 1
  • Yurngdong Jahng
    • 1
  • Eunyoung Kim
    • 2
  • Wonku Kang
    • 1
    Email author
  • Tae Cheon Jeong
    • 1
    Email author
  1. 1.College of PharmacyYeungnam UniversityGyeongsanKorea
  2. 2.College of PharmacyChungnam National UniversityDaejeonKorea

Personalised recommendations