Archives of Pharmacal Research

, Volume 34, Issue 1, pp 3–21 | Cite as

Design and synthesis of some new theophylline derivatives with bronchodilator and antibacterial activities

  • Alaa M. Hayallah
  • Walid A. Elgaher
  • Ola I. Salem
  • Abdel Alim M. Abdel Alim
Research Articles


Methylxanthines especially theophylline have been recognized as potent bronchodilators for the relief of acute asthma for over 65 years. Recently, it was found that bacterial infection plays a role in asthma pathogenesis. Accordingly, the present work involves the synthesis of 6-(4-(un)substituted phenyl)thiazolo[2,3-f]theophyllines 2a–g and different series of 8-(1,2,4-triazol-3-ylmethylthio)theophyllines 6–9. The chemical structures of the target compounds were proved by IR, 1H NMR, 13C NMR, EI-MS and HRMS spectroscopic techniques along with elemental analyses. The bronchodilator activity of fifteen compounds was determined in vivo by acetylcholine induced bronchospasm in anaesthetized guinea pigs. Results revealed that all compounds showed moderate to good activity; in addition, five compounds exhibited a bronchodilator activity nearly similar to that of aminophylline as a standard. The antibacterial activity of all the target compounds was investigated in vitro against both Gram-positive and Gram-negative bacterial strains. Results revealed that some compounds showed more potent antibacterial activity than ampicillin as a standard. Acute toxicity study for four target compounds revealed that none of these derivatives showed significant toxicity up to 300 mg/kg. It was found that compound 8c combined both promising bronchodilator and antibacterial activities. This compound could be subjected for further investigations as a new possible candidate in the treatment of bronchial asthma.

Key words

Xanthine derivatives Asthma Bronchodilators Antibacterial activity Acute toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhila, J. S., Shyamjith, Deepa, and Alwar, M. C., Acute toxicity studies and determination of median lethal dose. Curr. Sci., 93, 917–920 (2007).Google Scholar
  2. Ashour, F. A., Yousry, A. H., and Hamouda, A. F., Synthesis of some 4-arylideneamino-5-mercapto-1,2,4-triazole, 1,2,4-triazolothiadiazole and 1,2,4-triazolothiadiazine derivatives of theophylline as antimicrobial agents. Alex. J. Pharm. Sci., 7, 127–130 (1993).Google Scholar
  3. Baraldi, P. G., Fruttarolo, F., Tabrizi, M. A., Romagnoli, R., and Preti, D., Novel 8-heterocyclic xanthine derivatives in drug development — an update. Expert Opin. Drug Discov., 2, 1161–1183 (2007).CrossRefGoogle Scholar
  4. Baziard-Mouysset, G., Rached, A., Younes, S., Tournaire, C., Stigliani, J. L., Payard, M., Yavo, J. C., and Advenier, C., Synthesis and in vitro bronchospasmolytic activity of 8-aryl, heteroaryl or arylalkyl theophyllines. Eur. J. Med. Chem., 30, 253–260 (1995).CrossRefGoogle Scholar
  5. Berk, B., Akgün, H., Erol, K., Sirmagül, B., Gao, Z.-G., and Jacobson, K. A., New 8-substituted xanthine derivatives as potent bronchodilators. Farmaco, 60, 974–980 (2005).PubMedCrossRefGoogle Scholar
  6. Black, P. N., Blasi, F., Jenkins, C. R., Scicchitano, R., Mills, G. D., Rubinfeld, A. R., Ruffin, R. E., Mullins, P. R., Dangain, J., Cooper, B. C., David, D. B., and Allegra, L., Trial of roxithromycin in subjects with asthma and serological evidence of infection with Chlamydia pneumoniae. Am. J. Respir. Crit. Care Med., 164, 536–541 (2001).PubMedGoogle Scholar
  7. Black, P. N., Antibiotics for the treatment of asthma. Curr. Opin. Pharmacol., 7, 266–271 (2007).PubMedCrossRefGoogle Scholar
  8. Cook, P. J., Davies, P., Tunnicliffe, W., Ayres, J. G., Honeybourne, D., and Wise, R., Chlamydia pneumoniae and asthma. Thorax, 53, 254–259 (1998).PubMedCrossRefGoogle Scholar
  9. Cunningham, A. F., Johnston, S. L., Julious, S. A., Lampe, F. C., and Ward, M. E., Chronic Chlamydia pneumoniae infection and asthma exacerbations in children. Eur. Respir. J., 11, 345–349 (1998).PubMedCrossRefGoogle Scholar
  10. Dianov, V. M. and Bulgakov, A. K., Synthesis and antimicrobial activity of 3-methyl-substituted 6,8-dimethylthiazolo [2,3-f]xanthines. Pharm. Chem. J., 40, 551–553 (2006).CrossRefGoogle Scholar
  11. Elgaher, W. A., Hayallah, A. M., Salem, O. I. A., and Abdel Alim, A. A. M., Synthesis, anti-bronchoconstrictive, and antibacterial activities of some new 8-substituted-1,3-dimethylxanthine derivatives. Bull. Pharm. Sci., Assiut University, 32, 153–187 (2009).Google Scholar
  12. Ellis, E. F., Theophylline, In Lieberman, P. and Anderson, J. A. (Eds.). Allergic Diseases Diagnosis and Treatment. 3rd ed. Humana Press Inc., Totowa, New Jersey, pp. 343–359, (2007).Google Scholar
  13. El-Shorbagi, A. A., Hayallah, A. A., Omar, N. M., and Ahmed, A. N., Design and synthesis of some thiazolo[3,2-a]benzimidazole quaternary salts of potential antidiabetic activity. Bull. Pharm. Sci., Assiut University, 24, 7–20 (2001).Google Scholar
  14. Grosa, G., Caputo, O., Ceruti, M., Biglino, G., Franzone, J. S., and Cirillo, R., Synthesis and antibronchospastic activity of theophylline thioacetal derivatives. Eur. J. Med. Chem., 24, 635–638 (1989).CrossRefGoogle Scholar
  15. Hahn, D. L., Dodge, R. W., and Golubjatnikov, R., Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA, 266, 225–230 (1991).PubMedCrossRefGoogle Scholar
  16. Hayallah, A. M., Design and synthesis of new 1,8-disubstituted purine-2,6-diones and 3,6-disubstituted thiazolo[2,3-f] purine-2,4-diones as potential antinociceptive and antiinflammatory agents. Pharmacia, 54, 3–13 (2007).Google Scholar
  17. Hayallah, A. M. and Famulok, M., Synthesis of new 1,3,8-trisubstituted purine-2,6-diones and 1,3,6-trisubstituted thiazolo[ 2,3-f]purine-2,4-diones. Heterocycles, 74, 369–382 (2007).CrossRefGoogle Scholar
  18. Hewitt, W., Microbiological Assay an Introduction to Quantitative Principles and Evaluation. Academic Press, New York, pp. 17–69, (1977).Google Scholar
  19. Holla, B. S. and Akberali, P. M., Studies on arylfuran heterocycles. Part-I. synthesis of 6-(5-aryl-2-furyl)-1,2,4-triazolo [3,4-b]-1,3,4-thiadiazoles. J. Indian Chem. Soc., 68, 341–343 (1991).Google Scholar
  20. Johnson, I. M., Kumar, S. G. B., and Malathi, R., RNA binding efficacy of theophylline, theobromine and caffeine. J. Biomol. Struct. Dyn., 20, 687–692 (2003).PubMedGoogle Scholar
  21. Johnston, S. L. and Martin, R. J., Chlamydophila pneumoniae and Mycoplasma pneumoniae a role in asthma pathogenesis. Am. J. Respir. Crit. Care Med., 172, 1078–1089 (2005).PubMedCrossRefGoogle Scholar
  22. Johnston, S. L., Blasi, F., Black, P. N., Martin, R. J., Farrell, D. J., and Nieman, R. B., The effect of telithromycin in acute exacerbations of asthma. N. Engl. J. Med., 354, 1589–1600 (2006).PubMedCrossRefGoogle Scholar
  23. Karlsson, J.-A., Kjellin, G., and Persson, C. G. A., Effects on tracheal smooth muscle of adenosine and methylxanthines, and their interaction. J. Pharm. Pharmacol., 34, 788–793 (1982).Google Scholar
  24. Karsovskii, A. N., Turkevich, N. M., Turchencko, M. I., Kochergin, P. M., and Soroka, I. I., 2,3-Dihydro-6,8-dimethylthiazolo[ 3,2-f]xanthin-3-one and its derivatives at the methylene group. Ukr. Khim. Zh., 48, 514–517 (1982).Google Scholar
  25. Karthikeyan, M. S., Holla, B. S., and Kumari, N. S., Synthesis and antimicrobial studies of novel dichlorofluorophenyl containing aminotriazolothiadiazines. Eur. J. Med. Chem., 43, 309–314 (2008).PubMedCrossRefGoogle Scholar
  26. Kesler, B. S. and Canning, B. J., Regulation of baseline cholinergic tone in guinea-pig airway smooth muscle. J. Physiol., 518, 843–855 (1999).PubMedCrossRefGoogle Scholar
  27. Kraft, M., Cassell, G. H., Henson, J. E., Watson, H., Williamson, J., Marmion, B. P., Gaydos, C. A., and Martin, R. J., Detection of Mycoplasma pneumoniae in the airways of adults with chronic asthma. Am. J. Respir. Crit. Care Med., 158, 998–1001 (1998).PubMedGoogle Scholar
  28. Kraft, M., Cassell, G. H., Pak, J., and Martin, R. J., Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma effect of clarithromycin. Chest, 121, 1782–1788 (2002).PubMedCrossRefGoogle Scholar
  29. Labbe, R. G. and Nolan, L. L., Inhibition of macromolecular synthesis by caffeine in Clostridium perfringens. Can. J. Microbiol., 33, 589–592 (1987).PubMedCrossRefGoogle Scholar
  30. Litchfield, J. T. and Wilcoxon, F., A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther., 96, 99–113 (1949).PubMedGoogle Scholar
  31. Nafisi, S., Manouchehri, F., Tajmir-Riahi, H.-A., and Varavipour, M., Structural features of DNA interaction with caffeine and theophylline. J. Mol. Struct., 875, 392–399 (2008).CrossRefGoogle Scholar
  32. Ochiai, E., Synthese von thiazolo-imidazol- und thiazolopurin-derivaten. Berichte der Deutschen Chemischen Gesellschaft, 69B, 1650–1655 (1936).Google Scholar
  33. Pajkert, R., Milewska, M., Röschenthaler, G.-V., and Koroniak, H., The amination of difluoro(diethoxyphosphoryl)acetyl chloride: facile synthetic route to novel amides containing difluoromethylenephosphonate moiety. J. Fluorine Chem., 130, 695–701 (2009).CrossRefGoogle Scholar
  34. Peikov, P. T., Zaltkov, A. B., Markov, M. T., Danchev, N. D., Ivanov, D. I., and Panova, J. T., Synthesis, toxicological and pharmacological assessment of 7-substituted derivatives of 1,3-dimethylxanthine. Eur. J. Med. Chem., 29, 295–299 (1994).CrossRefGoogle Scholar
  35. Pérez, C., Pelayo, F., Vilaboa, N. E., and Aller, P., Caffeine attenuates the action of amsacrine and etoposide in U-937 cells by mechanisms which involve inhibition of RNA synthesis. Int. J. Cancer, 57, 889–893 (1994).PubMedCrossRefGoogle Scholar
  36. Raeburn, D., Underwood, S. L., Lewis, S. A., Woodman, V. R., Battram, C. H., Tomkinson, A., Sharma, S., Jordan, R., Souness, J. E., Webber, S. E., and Karlsson, J.-A., Anti-inflammatory and bronchodilator properties of RP73401, a novel and selective phosphodiesterase type IV inhibitor. Br. J. Pharmacol., 113, 1423–1431 (1994).PubMedGoogle Scholar
  37. Raj, C. V. S. and Dhala, S., Effect of naturally occurring xanthines on bacteria: I. Antimicrobial action and potentiating effect on antibiotic spectra. Appl. Microbiol., 13, 432–436 (1965).PubMedGoogle Scholar
  38. Regnier, G. L., Guillonneau, C. G., Duhault, J. L., Tisserand, F. P., Saint-Romas, G., and Holstorp, S. M., New xanthine derivatives with potent and long lasting anti-bronchoconstrictive activity. Eur. J. Med. Chem., 22, 243–250 (1987).CrossRefGoogle Scholar
  39. Romanenko, N. I., Fedulova, I. V., Lesnichaya, A. N., Priimenko, B. A., Pereverzeva, T. A., and Aleksandrova, E. V., Synthesis and study of antibacterial and antifungal activity of some 3-methyl-8-nitroxanthine derivatives. Pharm. Chem. J., 31, 189–190 (1997).CrossRefGoogle Scholar
  40. Sandlie, I., Solberg, K., and Kleppe, K., The effect of caffeine on cell growth and metabolism of thymidine in Escherichia coli. Mutat. Res., 73, 29–41 (1980).PubMedCrossRefGoogle Scholar
  41. Scott, A. C., Laboratory control of antimicrobial therapy, In Collee, J. G., Duguid, J. P., Fraser, A. G., and Marmion, B. P. (Eds.). Mackie & McCartney Practical Medical Microbiology. Churchill Livingstone, Edinburgh, pp. 161–181, (1989).Google Scholar
  42. Silverstein, R. M., Webster, F. X., and Kiemle, D. J., Spectrometric Identification of Organic Compounds. 7th ed. John Wiley & Sons, New York, pp. 105–106, (2005).Google Scholar
  43. Strokin, Y. V., Karsovskii, I. A., Ovrutskii, V. M., Protsenko, L. D., Kremzer, A. A., Aleksandrova, E. V., Karsovskii, A. N., Votyakov, V. I., Sharykina, N. I., Shashikhina, M. N., Bukhtiarova, T. A., Zhavrid, S. V., and Rebyanskaya, L. V., Synthesis and biological activity of heterylaceto- and — thioacetohydrazide derivatives. Pharm. Chem. J., 24, 493–496 (1990).CrossRefGoogle Scholar
  44. Talbot, T. R., Hartert, T. V., Mitchel, E., Halasa, N. B., Arbogast, P. G., Poehling, K. A., Schaffner, W., Craig, A. S., and Griffin, M. R., Asthma as a risk factor for invasive pneumococcal disease. N. Engl. J. Med., 352, 2082–2090 (2005).PubMedCrossRefGoogle Scholar
  45. Uno, H., Irie, A., and Hino, K., Syntheses of thiazolo[2,3-f] theophyllines and their mass spectrometry. Chem. Pharm. Bull., 20, 2603–2606 (1972).Google Scholar
  46. Yurchenko, M. I., Kochergin, P. M., and Krasovskii, A. N., Reaction of 8-thiotheophylline with α-halo ketones. Chem. Heterocycl. Compd., 10, 600–603 (1974).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Alaa M. Hayallah
    • 1
  • Walid A. Elgaher
    • 1
  • Ola I. Salem
    • 1
  • Abdel Alim M. Abdel Alim
    • 1
  1. 1.Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyAssiut UniversityAssiutEgypt

Personalised recommendations