Advertisement

Archives of Pharmacal Research

, Volume 33, Issue 11, pp 1867–1876 | Cite as

Sulforaphane suppresses TARC/CCL17 and MDC/CCL22 expression through heme oxygenase-1 and NF-κB in human keratinocytes

  • Seung-Il Jeong
  • Byung-Min Choi
  • Seon Il Jang
Article

Abstract

Sulforaphane (4-methylsulfinylbutyl isothiocyanate, SFN) from broccoli has been used a chemopreventive photochemical as detoxification of xenobiotics and anti-inflammatory, however, there is no studies for Th2 chemokine expression through heme oxygenase-1 and NF-κB in keratinocytes. Atopic dermatitis is a chronically relapsing pruritic inflammatory skin disease. SFN is demonstrated to have anti-inflammatory and anti-oxidant effects. This study aimed to define whether and how SFN regulates Th2-related chemokine production in human HaCaT keratinocytes. The level of chemokine expression was measured by reverse transcription polymerase chain reaction (RT-PCR) and signaling study was performed by Western blot analysis. Chemokine production was determined by enzyme-linked immunosorbent assay. Pretreatment with SFN suppressed interferon-γ (IFN-γ) and tumor necrosis factor (TNF)-α- induced thymus- and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) production in HaCaT keratinocytes. SFN inhibited IFN-γ and TNF-α-induced NF-κB activation as well as STAT1 activation. Interestingly, pretreatment with SFN result in significantly suppressed IFN-γ and TNF-α-induced TARC/CCL17 and MDC/CCL22 production through the induction of HO-1. This suppression was completely abolished by HO-1 siRNA. Furthermore, Carbon monoxide, but not other end products of HO-1 activity, also suppressed IFN-γ and TNF-α-induced TARC/CCL17 and MDC/CCL22 production. These results demonstrate that SFN has an inhibitory role in IFN-γ and TNF-α-induced production of TARC/CCL17 and MDC/CCL22 in human HaCaT cells by inhibition of NF-κB activation and induction of HO-1.

Key words

Sulforaphane Th2 chemokines Heme oxygenase-1 NF-κB Keratinocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, B. B., Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol., 3, 745–756 (2003).CrossRefPubMedGoogle Scholar
  2. Beltrani, V. S., The clinical spectrum of atopic dermatitis. J. Allergy Clin. Immunol., 104, S87–S98 (1999).CrossRefPubMedGoogle Scholar
  3. Bowler, R. P. and Crapo, J. D., Oxidative stress in airways: is there a role for extracellular superoxide dismutase? Am. J. Respir. Crit. Care Med., 166, S38–S43 (2002).CrossRefPubMedGoogle Scholar
  4. Bussolati, B., Ahmed, A., Pemberton, H., Landis, R. C., Di Carlo, F., Haskard, D. O., and Mason, J. C., Bifunctional role for VEGF-induced heme oxygenase-1 in vivo: induction of angiogenesis and inhibition of leukocytic infiltration. Blood, 103, 761–766 (2004).CrossRefPubMedGoogle Scholar
  5. Chang, M., McNinch, J., Elias, C. 3rd, Manthey, C. L., Grosshans, D., Meng, T., Boone, T., and Andrew, D. P., Molecular chloning and functional characterization of a novel CC chemokine, stimulated T cell chemotactic protein (STCP-1) that specifically acts on activated T lymphocytes. J. Biol. Chem., 272, 25229–25237 (1997).CrossRefPubMedGoogle Scholar
  6. Chen, S., Kapturczak, M. H., Wasserfall, C., Glushakova, O. Y., Campbell-Thompson, M., Deshane, J. S., Joseph, R., Cruz, P. E., Hauswirth, W. W., Madsen, K. M., Croker, B. P., Berns, K. I., Atkinson, M. A., Flotte, T. R., Tisher, C. C., and Agarwal, A., Interleukin 10 attenuates neointimal proliferation and inflammation in aortic allografts by a heme oxygenase-dependent pathway. Proc. Natl. Acad. Sci. U.S.A., 102,7251–7256 (2005).CrossRefPubMedGoogle Scholar
  7. Choi, B. M., Pae, H. O., Jeong, Y. R., Oh, G. S., Jun, C. D., Kim, B. R., and Chung, H. T., Overexpression of heme oxygenase (HO)-1 renders Jurkat T cells resistant to fasmediated apoptosis: involvement of iron released by HO-1. Free Radic. Biol. Med., 36, 858–871 (2004).CrossRefPubMedGoogle Scholar
  8. Choi, S. and Singh, S. V., Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent. Cancer Res., 65, 2035–2043 (2005).CrossRefPubMedGoogle Scholar
  9. Clark, J. E., Foresti, R., Green, C. J., and Motterlini, R., Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem. J., 348, 615–619 (2000).CrossRefPubMedGoogle Scholar
  10. Clarke, J. D., Dashwood, R. H., and Ho, E., Multi-targeted prevention of cancer by sulforaphane. Cancer Lett., 269, 291–304 (2008).CrossRefPubMedGoogle Scholar
  11. Darnell, J. E., Jr., Kerr, I. M., and Stark, G. R., Jak-STAT1 pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 264, 1415–1421 (1994).CrossRefPubMedGoogle Scholar
  12. Godiska, R., Chantry, D., Raport, C. J., Sozzani, S., Allavena, P., Leviten, D., Mantovani, A., and Gray, P. W., Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J. Exp. Med., 185, 1595–1604 (1997).CrossRefPubMedGoogle Scholar
  13. Haagerup, A., Bjerke, T., Schiotz, P. O., Dahl, R., Binderup, H. G., Tan, Q., and Kruse, T. A., Atopic dermatitis: a total genome-scan for susceptibility genes. Acta Derm. Venereol., 84, 346–352 (2004).CrossRefPubMedGoogle Scholar
  14. Heiss, E., Herhaus, C., Klimo, K., Bartsch, H., and Gerhäuser, C., Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J. Biol. Chem., 276, 32008–32015 (2001).CrossRefPubMedGoogle Scholar
  15. Hino, R., Kobayashi, M., Mori, T., Orimo, H., Shimauchi, T., Kabashima, K., and Tokura, Y., Inhibition of T helper 2 chemokine production by narrowband ultraviolet B in cultured keratinocytes. Br. J. Dermatol., 156, 830–837 (2007).CrossRefPubMedGoogle Scholar
  16. Hu, R., Khor, T. O., Shen, G., Jeong, W. S., Hebbar, V., Chen, C., Xu, C., Reddy, B., Chada, K., and Kong, A. N., Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis, 27, 2038–2046 (2006).CrossRefPubMedGoogle Scholar
  17. Imai, T., Chantry, D., Raport, C. J., Wood, C. L., Nishimura, M., Godiska, R., Yoshie, O., and Gray, P. W., Macrophagederived chemokines is a functional ligand for the CC chemokine receptor 4. J. Biol. Chem., 273, 1764–1768 (1998).CrossRefPubMedGoogle Scholar
  18. Ju, S. M., Song, H. Y., Lee, S. J., Seo, W. Y., Sin, D. H., Goh, A. R., Kang, Y. H., Kang, I. J., Won, M. H., Yi, J. S., Kwon, D. J., Bae, Y. S., Choi, S. Y., and Park, J., Suppression of thymus- and activation-regulated chemokine (TARC/CCL17) production by 1,2,3,4,6-penta-O-galloyl-β-D-glucose via blockade of NF-κB and STAT1 activation in the HaCaT cells. Biochem. Biophys. Res. Commun., 387, 115–120 (2009).CrossRefPubMedGoogle Scholar
  19. Kapturczak, M. H., Wasserfall, C., Brusko, T., Campbell-Thompson, M., Ellis, T. M., and Atkinson, M. A., Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am. J. Pathol., 165, 1045–1053 (2004).PubMedGoogle Scholar
  20. Kirino, M., Kirino, Y., Takeno, M., Nagashima, Y., Takahashi, K., Kobayashi, M., Murakami, S., Hirasawa, T., Ueda, A., Aihara, M., Ikezawa, Z., and Ishigatsubo, Y., Heme oxygenase 1 attenuates the development of atopic dermatitislike lesions in mice: implications for human disease. J. Allergy Clin. Immunol., 122, 290–297 (2008).CrossRefPubMedGoogle Scholar
  21. Kong, A. N., Yu, R., Hebbar, V., Chen, C., Owuor, E., Hu, R., and Ee, R., Mandlekar, S., Signal transduction events elicited by cancer prevention compounds. Mutat. Res., 480–481, 231–241 (2001).PubMedGoogle Scholar
  22. Li, H., van Berlo, D., Shi, T., Speit, G., Knaapen, A. M., Borm, P. J., Albrecht, C., and Schins, R. P., Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line. Toxicol. Appl. Pharmacol., 227, 115–124 (2008).CrossRefPubMedGoogle Scholar
  23. Lin, W., Wu, R. T., Wu, T., Khor, T. O., Wang, H., and Kong, A. N., Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol., 76, 967–973 (2008).CrossRefPubMedGoogle Scholar
  24. Mi, L., Xiao, Z., Hood, B. L., Dakshanamurthy, S., Wang, X., Govind, S., Conrads, T. P., Veenstra, T. D., and Chung, F. L., Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J. Biol. Chem., 283, 22136–22146 (2008).CrossRefPubMedGoogle Scholar
  25. Minamino, T., Christou, H., Hsieh, C. M., Liu, Y., Dhawan, V., Abraham, N. G., Perrella, M. A., Mitsialis, S. A., and Kourembanas, S., Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc. Natl. Acad. Sci. U.S.A., 98, 8798–8803 (2001).CrossRefPubMedGoogle Scholar
  26. Nakazato, J., Kishida, M., Kuroiwa, R., Fujiwara, J., Shimoda, M., and Shinomiya, N., Serum levels of Th2 chemokines, CCL17, CCL22, and CCL27, were the important markers of severity in infantile atopic dermatitis. Pediatr. Allergy Immunol., 19, 605–613 (2008).PubMedGoogle Scholar
  27. Nakao, A., Moore, B. A., Murase, N., Liu, F., Zuckerbraun, B. S., Bach, F. H., Choi, A. M., Nalesnik, M. A., Otterbein, L. E., and Bauer, A. J., Immunomodulatory effects of inhaled carbon monoxide on rat syngeneic small bowel graft motility. Gut, 52, 1278–1285 (2003).CrossRefPubMedGoogle Scholar
  28. Nickel, R., Beck, L. A., Stellato, C., and Schleimer, R. P., Chemokines and allergic disease. J. Allergy Clin. Immunol., 104, 723–742 (1999).CrossRefPubMedGoogle Scholar
  29. Perocco, P., Bronzetti, G., Canistro, D., Valgimigli, L., Sapone, A., Affatato, A., Pedulli, G. F., Pozzetti, L., Broccoli, M., Iori, R., Barillari, J., Sblendorio, V., Legator, M. S., Paolini, M., and Abdel-Rahman, S. Z., Glucoraphanin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane found in broccoli, induces phase-I xenobiotic metabolizing enzymes and increases free radical generation in rat liver. Mutat. Res., 595, 125–136 (2006).PubMedGoogle Scholar
  30. Qi, X. F., Kim, D. H., Yoon, Y. S., Li, J. H., Jin, D., Teng, Y. C., Kim, S. K., and Lee, K. J., Fluvastatin inhibits expression of the chemokine MDC/CCL22 induced by interferong in HaCaT cells, a human keratinocyte cell line. Br. J. Pharmacol., 157, 1441–1450 (2009).CrossRefPubMedGoogle Scholar
  31. Rossi, D. and Zlotnik, A., The biology of chemokines and their receptors. Annu. Rev. Immunol., 18, 217–242 (2000).CrossRefPubMedGoogle Scholar
  32. Ryter, S. W. and Otterbein, L. E., Carbon monoxide in biology and medicine. Bioessays, 26, 270–280 (2004).CrossRefPubMedGoogle Scholar
  33. Schreiber, E., Matthias, P., Muller, M. M., and Schaffner, W., Rapid detection of octamer binding proteins with ‘miniextracts’, prepared from a small number of cells. Nucleic. Acids Res., 17, 6419 (1989).CrossRefPubMedGoogle Scholar
  34. Shibata, A., Nakagawa, K., Yamanoi, H., Tsuduki, T., Sookwong, P., Higuchi, O., Kimura, F., and Miyazawa, T., Sulforaphane suppresses ultraviolet B-induced inflammation in HaCaT keratinocytes and HR-1 hairless mice. J. Nutr. Biochem., 21, 702–709 (2010).CrossRefPubMedGoogle Scholar
  35. Shimada, Y., Takehara, K., and Sato, S., Both Th2 and Th1 chemokines (TARC/CCL17, MDC/CCL22, Mig/CCL9) are elevated in sera form patients with atopic dermatitis. J. Dermatol. Sci., 34, 201–218 (2004).CrossRefPubMedGoogle Scholar
  36. Takamiya, R., Murakami, M., Kajimura, M., Goda, N., Makino, N., Takamiya, Y., Yamaguchi, T., Ishimura, Y., Hozumi, N., and Suematsu, M., Stabilization of mast cells by heme oxygenase-1: an anti-inflammatory role. Am. J. Physiol. Heart Circ. Physiol., 283, H861–H870 (2002).PubMedGoogle Scholar
  37. Tsukahara, H., Shibata, R., Ohshima, Y., Todoroki, Y., Sato, S., Ohta, N., Hiraoka, M., Yoshida, A., Nishima, S., and Mayumi, M., Oxidative stress and altered antioxidant defenses in children with acute exacerbation of atopic dermatitis. Life. Sci., 72, 2509–2516 (2003).CrossRefPubMedGoogle Scholar
  38. Vestergaard, C., Yoneyama, H., Murai, M., Nakamura, K., Tamaki, K., Terashima, Y., Imai, T., Yoshie, O., Irimura, T., Mizutani, H., and Matsushima, K., Overproduction of Th2-specific chemokines in NC/Nga mic exhibiting atopic dermatitis-like lesions. J. Clin. Invest., 104, 1097–1105 (1999).CrossRefPubMedGoogle Scholar
  39. Vestergaard, C., Bang, K., Gesser, B., Yoneyama, H., Matsushima, K., and Larsen, C. G., A Th2 chemokine, TARC, produced by keratinocytes may recruit CLA+CCR4+ lymphocytes into lesional atopic dermatitis skin. J. Invest. Dermatol., 115, 640–646 (2000).CrossRefPubMedGoogle Scholar
  40. Xu, C., Shen, G., Chen, C., Gélinas, C., and Kong, A. N., Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene, 24, 4486–4495 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Jeonju Biomaterials InstituteJeonjuKorea
  2. 2.Department of Biochemistry, School of MedicineWonkwang UniversityIksanKorea
  3. 3.School of Alternative Medicine & Health Science, College of Alternative MedicineJeonju UniversityJeonjuKorea

Personalised recommendations