Advertisement

Archives of Pharmacal Research

, Volume 33, Issue 11, pp 1843–1850 | Cite as

Anti-inflammatory effect of visnagin in lipopolysaccharide-stimulated BV-2 microglial cells

  • Jin-Koo Lee
  • Jun-Sub Jung
  • Sang-Hee Park
  • Soo-Hyun Park
  • Yun-Beom Sim
  • Seon-Mi Kim
  • Tal-Soo Ha
  • Hong-Won Suh
Article

Abstract

Visnagin, which is found in Ammi visnaga, has biological activity as a vasodilator and reduces blood pressure by inhibiting calcium influx into the cell. The present study demonstrates the anti-inflammatory effect of visnagin on lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. When cells were treated with visnagin prior to LPS stimulation, production of nitric oxide and expression of iNOS were attenuated in a dose-dependent manner. Visnagin also caused a significant decrease of mRNA expression and release of TNF-α, IL-1β and IFNγ. In addition, visnagin reduced LPS-induced IL-6 and MCP-1 mRNA level. We further found that visnagin dose-dependently inhibited LPS-induced AP-1 and NF-κB luciferase activities. Taken together, our results for the first time suggest that the anti-inflammatory effect of visnagin might result from the inhibition of transcription factors, such as AP-1 and NF-κB.

Key words

Anti-inflammation Microglial cells Visnagin Inducible nitric oxide synthase AP-1 NF-κB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aquilano, K., Baldelli, S., Rotilio, G., and Ciriolo, M. R., Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem. Res., 33, 2416–2426 (2008).CrossRefPubMedGoogle Scholar
  2. Bae, E. A., Kim, E. J., Park, J. S., Kim, H. S., Ryu, J. H., and Kim, D. H., Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med., 72, 627–633 (2006).CrossRefPubMedGoogle Scholar
  3. Candelario-Jalil, E., De Oliveira, A. C., Graf, S., Bhatia, H. S., Hull, M., Munoz, E., and Fiebich, B. L., Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J. Neuroinflammation, 4, 25 (2007).CrossRefPubMedGoogle Scholar
  4. Chen, J. C., Ho, F. M., Pei-Dawn Lee, C., Chen, C. P., Jeng, K. C., Hsu, H. B., Lee, S. T., Wen Tung, W., and Lin, W. W., Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factorkappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur. J. Pharmacol., 521, 9–20 (2005).CrossRefPubMedGoogle Scholar
  5. Chu, S. C., Marks-Konczalik, J., Wu, H. P., Banks, T. C., and Moss, J., Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters. Biochem. Biophys. Res. Commun., 248, 871–878 (1998).CrossRefPubMedGoogle Scholar
  6. De Simone, R., Levi, G., and Aloisi, F., Interferon gamma gene expression in rat central nervous system glial cells. Cytokine, 10, 418–422 (1998).CrossRefPubMedGoogle Scholar
  7. Duarte, J., Perez-Vizcaino, F., Torres, A. I., Zarzuelo, A., Jimenez, J., and Tamargo, J., Vasodilator effects of visnagin in isolated rat vascular smooth muscle. Eur. J. Pharmacol., 286, 115–122 (1995).CrossRefPubMedGoogle Scholar
  8. Duarte, J., Torres, A. I., and Zarzuelo, A., Cardiovascular effects of visnagin on rats. Planta Med., 66, 35–39 (2000).CrossRefPubMedGoogle Scholar
  9. Faggioli, L., Costanzo, C., Donadelli, M., and Palmieri, M., Activation of the Interleukin-6 promoter by a dominant negative mutant of c-Jun. Biochim. Biophys. Acta, 1692, 17–24 (2004).CrossRefPubMedGoogle Scholar
  10. Graeber, M. B. and Streit, W. J., Microglia: biology and pathology. Acta Neuropathol., 119, 89–105 (2010).CrossRefPubMedGoogle Scholar
  11. Jang, S., Kelley, K. W., and Johnson, R. W., Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc. Natl. Acad. Sci. U.S.A., 105, 7534–7539 (2008).CrossRefPubMedGoogle Scholar
  12. Jung, J. S., Yan, J. J., and Song, D. K., Protective effect of decursinol on mouse models of sepsis: enhancement of interleukin-10. Korean J. Physiol. Pharmacol., 12, 79–81 (2008).CrossRefPubMedGoogle Scholar
  13. Kao, T. K., Ou, Y. C., Raung, S. L., Lai, C. Y., Liao, S. L., and Chen, C. J., Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sci., 86, 315–321 (2010).CrossRefPubMedGoogle Scholar
  14. Kaul, B. and Staba, E. J., Visnagin: biosynthesis and isolation from Ammi visnagi suspension cultures. Science, 150, 1731–1732 (1965).CrossRefPubMedGoogle Scholar
  15. Kawanokuchi, J., Mizuno, T., Takeuchi, H., Kato, H., Wang, J., Mitsuma, N., and Suzumura, A., Production of interferon-gamma by microglia. Mult. Scler., 12, 558–564 (2006).CrossRefPubMedGoogle Scholar
  16. Lee, C. J., Lee, S. S., Chen, S. C., Ho, F. M., and Lin, W. W., Oregonin inhibits lipopolysaccharide-induced iNOS gene transcription and upregulates HO-1 expression in macrophages and microglia. Br. J. Pharmacol., 146, 378–388 (2005).CrossRefPubMedGoogle Scholar
  17. Lu, D. Y., Tang, C. H., Chen, Y. H., and Wei, I. H., Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia. J. Cell. Biochem., 110, 697–705 (2010).CrossRefPubMedGoogle Scholar
  18. Park, S. H., Kang, J. S., Yoon, Y. D., Lee, K., Kim, K. J., Lee, K. H., Lee, C. W., Moon, E. Y., Han, S. B., Kim, B. H., Kim, H. M., and Park, S. K., Glabridin inhibits lipopolysaccharide-induced activation of a microglial cell line, BV-2, by blocking NF-kappaB and AP-1. Phytother. Res., 24Suppl 1, S29–S34 (2010).CrossRefPubMedGoogle Scholar
  19. Perez, R. L., Ritzenthaler, J. D., and Roman, J., Transcriptional regulation of the interleukin-1beta promoter via fibrinogen engagement of the CD18 integrin receptor. Am. J. Respir. Cell Mol. Biol., 20, 1059–1066 (1999).PubMedGoogle Scholar
  20. Rauwald, H. W., Brehm, O., and Odenthal, K. P., The involvement of a Ca2+ channel blocking mode of action in the pharmacology of Ammi visnaga fruits. Planta Med., 60, 101–105 (1994).CrossRefPubMedGoogle Scholar
  21. Ray, B. and Lahiri, D. K., Neuroinflammation in Alzheimer’s disease: different molecular targets and potential therapeutic agents including curcumin. Curr. Opin. Pharmacol., 9, 434–444 (2009).CrossRefPubMedGoogle Scholar
  22. Saraiva, M. and O’garra, A., The regulation of IL-10 production by immune cells. Nat. Rev. Immunol., 10, 170–181 (2010).CrossRefPubMedGoogle Scholar
  23. Saud, K., Herrera-Molina, R., and Von Bernhardi, R., Proand anti-inflammatory cytokines regulate the ERK pathway: implication of the timing for the activation of microglial cells. Neurotox. Res., 8, 277–287 (2005).CrossRefPubMedGoogle Scholar
  24. Strle, K., Zhou, J. H., Shen, W. H., Broussard, S. R., Johnson, R. W., Freund, G. G., Dantzer, R., and Kelley, K. W., Interleukin-10 in the brain. Crit. Rev. Immunol., 21, 427–449 (2001).PubMedGoogle Scholar
  25. Thompson, W. L., Karpus, W. J., and Van Eldik, L. J., MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J. Neuroinflammation, 5, 35 (2008).CrossRefPubMedGoogle Scholar
  26. Tuttolomondo, A., Di Raimondo, D., Di Sciacca, R., Pinto, A., and Licata, G., Inflammatory cytokines in acute ischemic stroke. Curr. Pharm. Des., 14, 3574–3589 (2008).CrossRefPubMedGoogle Scholar
  27. Tzeng, S. F., Hsiao, H. Y., and Mak, O. T., Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr. Drug Targets Inflamm. Allergy, 4, 335–340 (2005).CrossRefPubMedGoogle Scholar
  28. Ubeda, A., Tejerina, T., Tamargo, J., and Villar, A., Effects of khellin on contractile responses and 45Ca2+ movements in rat isolated aorta. J. Pharm. Pharmacol., 43, 46–48 (1991).PubMedGoogle Scholar
  29. Udalova, I. A. and Kwiatkowski, D., Interaction of AP-1 with a cluster of NF-kappa B binding elements in the human TNF promoter region. Biochem. Biophys. Res. Commun., 289, 25–33 (2001).CrossRefPubMedGoogle Scholar
  30. Vanachayangkul, P., Byer, K., Khan, S., and Butterweck, V., An aqueous extract of Ammi visnaga fruits and its constituents khellin and visnagin prevent cell damage caused by oxalate in renal epithelial cells. Phytomedicine, 17, 653–658 (2010).CrossRefPubMedGoogle Scholar
  31. Wang, J., Barke, R. A., Charboneau, R., Loh, H. H., and Roy, S., Morphine negatively regulates interferon-gamma promoter activity in activated murine T cells through two distinct cyclic AMP-dependent pathways. J. Biol. Chem., 278, 37622–37631 (2003).CrossRefPubMedGoogle Scholar
  32. Yang, X., Du, L., Tang, X., Jung, S. Y., Zheng, B., Soh, B. Y., Kim, S. Y., Gu, Q., and Park, H., Brevicompanine E reduces lipopolysaccharide-induced production of proinflammatory cytokines and enzymes in microglia by inhibiting activation of activator protein-1 and nuclear factorkappaB. J. Neuroimmunol., 216, 32–38 (2009).CrossRefPubMedGoogle Scholar
  33. Zhang, F., Liu, J., and Shi, J. S., Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur. J. Pharmacol., 636, 1–7 (2010).CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Jin-Koo Lee
    • 1
  • Jun-Sub Jung
    • 1
  • Sang-Hee Park
    • 1
  • Soo-Hyun Park
    • 1
  • Yun-Beom Sim
    • 1
    • 2
  • Seon-Mi Kim
    • 1
    • 2
  • Tal-Soo Ha
    • 3
  • Hong-Won Suh
    • 1
    • 2
  1. 1.Institute of Natural MedicineHallym UniversityChuncheonKorea
  2. 2.Department of Pharmacology, College of MedicineHallym UniversityChuncheonKorea
  3. 3.Department of Molecular Biology, College of Natural ScienceDaegu UniversityGyeongbukKorea

Personalised recommendations