Archives of Pharmacal Research

, Volume 33, Issue 10, pp 1679–1683 | Cite as

The regulation of blood glucose level in physical and emotional stress models: Possible involvement of adrenergic and glucocorticoid systems

  • Yun-Beom Sim
  • Soo-Hyun Park
  • Yu-Jung Kang
  • Seon-Mi Kim
  • Jin-Koo Lee
  • Jun-Sub Jung
  • Hong-Won Suh
Research Articles Drug Actions

Abstract

This study was done to determine the effect of stress on blood glucose regulation in ICR mice. The stress was induced by the electrical foot shock-witness model. Blood glucose level was found to be increased in the electrical foot shock-induced physical stress group. Furthermore, the blood glucose levels were also elevated in the emotional stress group in both physical and emotional stress groups. The blood glucose level reached maximum 30 min after stress stimulation and returned to normal level 2 h after stress stimulation in both physical and emotional stress groups. Subsequently, we observed that intraperitoneal injection of phentolamine (an α1-adrenergic receptor antagonist), yohimbine (an α2-adrenergic receptor antagonist) or RU486 (a glucocorticoid receptor blocker) significantly inhibited blood glucose level induced by both physical and emotional stress. The results of our study suggest that physical and emotional stress increases blood glucose level via activation of adrenergic and glucocorticoid system.

Key words

Emotional stress Physical stress Blood glucose Adrenergic Glucocorticoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano, M., Suemaru, K., Cui, R., Umeda, Y., Li, B., Gomita, Y., Kawasaki, H., and Araki, H., Effects of Physical and Psychological Stress on 5-HT2A Receptor-mediated Wetdog Shake Responses in Streptozotocin-induced Diabetic Rats. Acta Med. Okayama, 61, 205–212 (2007).PubMedGoogle Scholar
  2. Cox, R. H., Hubbard, J. W., Lawler, J. E., Sanders, B. J., and Mitchell, V. P., Cardiovascular and sympathoadrenal responses to stress in swim-trained rats. J. Appl. Physiol., 58, 1207–1214 (1985).PubMedGoogle Scholar
  3. De Boer, S. F., Koopmans, S. J., Slangen, J. L., and Van der G. J., Plasma catecholamine, corticosterone and glucose responses to repeated stress in rats: effect of interstressor interval length. Physiol. Behav., 47, 1117–1124 (1990).CrossRefPubMedGoogle Scholar
  4. Diamond, D. M., Bennett, M. C., Fleshner, M., and Rose, G. M., Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus, 2, 421–430 (1992).CrossRefPubMedGoogle Scholar
  5. Dobrakovová, M., Kvetnanský, R., Oprsalová, Z., and Jezová, D., Specificity of the effect of repeated handling on sympathetic-adrenomedullary and pituitary-adrenocortical activity in rats. Psychoneuroendocrinology, 18, 163–174 (1993).CrossRefPubMedGoogle Scholar
  6. Friedman, J. E., Sun, Y., Ishizuka, T., Farrell, C. J., McCormack, S. E., Herron, L. M., Hakimi, P., Lechner, P., and Yun, J. S., Phosphoenolpyruvate carboxykinase (GTP) gene transcription and hyperglycemia are regulated by glucocorticoids in genetically obese db/db transgenic mice. J. Biol. Chem., 272, 31475–31481 (1997).CrossRefPubMedGoogle Scholar
  7. Goran, K., Sladjana, P., Miloje, T., Svetlana, A., and Miodrag, D., Stress hyperglycemia in acute myocardial infarction. Facta Universitatis. Series, Medicine and Biology, 13, 152–157 (2006).Google Scholar
  8. Kainuma, E., Watanabe, M., Tomiyama, M. C., Inoue, M., Kuwano, Y., Ren, H., and Abo, T., Association of glucocorticoid with stress-induced modulation of body temperature, blood glucose and innate immunity. Psychoneuroendocrinology, 34, 1459–1468 (2009).CrossRefPubMedGoogle Scholar
  9. Konarska, M., Stewart, R. E., and McCarty, R., Habituation of sympathetic-adrenal medullary responses following exposure to chronic intermittent stress. Physiol. Behav., 45, 255–261 (1989).CrossRefPubMedGoogle Scholar
  10. Kvetnansky, R., Sun, C. L., Lake, C. R., Thoa, N., Torda, T., and Kopin, I. J., Effect of handling and forced immobilization on rat plasma levels of epinephrine, norepinephrine, and dopamine-β-hydroxylase. Endocrinology, 103, 1868–1874 (1978).CrossRefPubMedGoogle Scholar
  11. Kwon, M. S., Seo, Y. J., Shim, E. J., Lee, J. K., Jang, J. E., Park, S. H., Jung, J. S., and Suh, H. W., The differential effects of emotional or physical stress on pain behaviors or on c-Fos immunoreactivity in paraventricular nucleus or arcuate nucleus. Brain Res., 1190, 122–131 (2008).CrossRefPubMedGoogle Scholar
  12. Lekas, M. C., Fisher, S. J., El-Bahrani, B., van Delangeryt, M., Vranic, M., and Shi, Z. Q., Glucose uptake during centrally induced stress is insulin independent and enhanced by adrenergic blockade. J. Appl. Physiol., 87, 722–731 (1999).PubMedGoogle Scholar
  13. Márquez, C., Belda, X., and Armario, A., Post-stress recovery of pituitary-adrenal hormones and glucose, but not the response during exposure to the stressor, is a marker of stress intensity in highly stressful situations. Brain Res., 926, 181–185 (2002).CrossRefPubMedGoogle Scholar
  14. Natelson, B. H., Tapp, W. N., Adamus, J. E., Mittler, J. C., and Levin, B. E., Humoral indices of stress in rats. Physiol. Behav., 26, 1049–1054 (1981).CrossRefPubMedGoogle Scholar
  15. Natelson, B. H., Creighton, D., McCarty, R., Tapp, W. N., Pitman, D., and Ottenweller, J. E., Adrenal hormonal indices of stress in laboratory rats. Physiol. Behav., 39, 117–125 (1987).CrossRefPubMedGoogle Scholar
  16. Nonogaki, K. and Iguchi, A., Stress, acute hyperglycemia, and hyperlipidemia: role of the autonomic nervous system and cytokines. Trends Endocrinol. Metab., 8, 192–197 (1997).CrossRefPubMedGoogle Scholar
  17. Park, S. H., Sim, Y. B., Choi, S. M., Seo, Y. J., Kwon, M. S., Lee, J. K., and Suh, H. W., Antinociceptive profiles and mechanisms of orally administered vanillin in the mice. Arch. Pharm. Res., 32, 1643–1649 (2009).CrossRefPubMedGoogle Scholar
  18. Tajima, T., Endo, H., Suzuki, Y., Ikari, H., Gotoh, M., and Iguchi, A., Immobilization stress-induced increase of hippocampal acetylcholine and of plasma epinephrine, norepinephrine and glucose in rats. Brain Res., 720, 155–158 (1996).CrossRefPubMedGoogle Scholar
  19. Uresin, Y., Erbas, B., Ozek, M., Ozkök, E., and Gürol, A. O., Losartan may prevent the elevation of plasma glucose, corticosterone and catecholamine levels induced by chronic stress. J. Renin Angiotensin Aldosterone Syst., 5, 93–96 (2004).CrossRefPubMedGoogle Scholar
  20. Van den Berg, C. L., Lamberts, R. R., Wolterink, G., Wiegant, V. M., and Van Ree, J. M., Emotional and foot shock stimuli induce differential long-lasting behavioural effects in rats: involvement of opioids. Brain Res., 799, 6–15 (1998).CrossRefPubMedGoogle Scholar
  21. Verago, J. L., Grassi, D. M., and Spadari, R. C., Metabolic markers following beta-adrenoceptor agonist infusion in footshock-stressed rats. Braz. J. Med. Biol. Res., 34, 1197–1207 (2001).CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Yun-Beom Sim
    • 1
  • Soo-Hyun Park
    • 1
  • Yu-Jung Kang
    • 1
  • Seon-Mi Kim
    • 1
  • Jin-Koo Lee
    • 1
  • Jun-Sub Jung
    • 1
  • Hong-Won Suh
    • 1
    • 2
  1. 1.Department of Pharmacology, Institute of Natural Medicine, College of MedicineHallym UniversityChuncheonKorea
  2. 2.Department of Pharmacology, College of MedicineHallym UniversityChuncheonKorea

Personalised recommendations