Archives of Pharmacal Research

, Volume 33, Issue 10, pp 1539–1556 | Cite as

Inflammation and Alzheimer’s disease

  • Young-Jung Lee
  • Sang Bae Han
  • Sang-Yoon Nam
  • Ki-Wan Oh
  • Jin Tae HongEmail author


Alzheimer’s disease (AD) is the most common form of dementia. It is characterized by extracellular deposition of a specific protein, beta-amyloid peptide fibrils, and is accompanied by extensive loss of neurons in the brains of affected individuals. Although the pathophysiologic mechanism is not fully established, inflammation appears to be involved. Neuroinflammation has been known to play a critical role in the pathogenesis of chronic neurodegenerative disease in general, and in AD in particular. Numerous studies show the presence of a number of markers of inflammation in the AD brain: elevated inflammatory cytokines and chemokines, and accumulation of activated microglia in the damaged regions. Epidemiological studies have shown that long-term use of non-steroidal anti-inflammatory drugs suppresses the progression of AD and delays its onset, suggesting that there is a close correlation between neuroinflammation and AD pathogenesis. The aim of this review is (1) to assess the association between neuroinflammation and AD through discussion of a variety of experimental and clinical studies on AD and (2) to review treatment strategies designed to treat or prevent AD.

Key words

Alzheimer’s disease Inflammation Neuroinflammation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, C. R., Reactive astrocytes and alpha1-antichymotrypsin in Alzheimer’s disease. Neurobiol. Aging, 22, 931–936 (2001).PubMedCrossRefGoogle Scholar
  2. Aisen, P. S., Schmeidler, J., and Pasinetti, G. M., Randomized pilot study of nimesulide treatment in Alzheimer’s disease. Neurology, 58, 1050–1054 (2002).PubMedGoogle Scholar
  3. Aisen, P. S., Schafer, K. A., Grundman, M., Pfeiffer, E., Sano, M., Davis, K. L., Farlow, M. R., Jin, S., Thomas, R. G., and Thal, L. J., Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA, 289, 2819–2826 (2003).PubMedCrossRefGoogle Scholar
  4. Aisen, P. S., Thal, L. J., Ferris, S. H., Assaid, C., Nessly, M. L., Giuliani, M. J., Lines, C. R., Norman, B. A., and Potter, W. Z., Rofecoxib in patients with mild cognitive impairment: further analyses of data from a randomized, double-blind, trial. Curr. Alzheimer Res., 5, 73–82 (2008).PubMedCrossRefGoogle Scholar
  5. Akiyama, H., Arai, T., Kondo, H., Tanno, E., Haga, C., and Ikeda, K., Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis. Assoc. Disord., 14Suppl 1, S47–S53 (2000).PubMedGoogle Scholar
  6. Alafuzoff, I., Overmyer, M., Helisalmi, S., and Soininen, H., Lower counts of astroglia and activated microglia in patients with Alzheimer’s disease with regular use of nonsteroidal anti-inflammatory drugs. J. Alzheimers Dis., 2, 37–46 (2000).PubMedGoogle Scholar
  7. Anthony, J. C., Breitner, J. C., Zandi, P. P., Meyer, M. R., Jurasova, I., Norton, M. C., and Stone, S. V., Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the Cache County study. Neurology, 54, 2066–2071 (2000).PubMedGoogle Scholar
  8. Arce, M. P., Rodriguez-Franco, M. I., Gonzalez-Munoz, G. C., Perez, C., Lopez, B., Villarroya, M., Lopez, M. G., Garcia, A. G., and Conde, S., Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer’s disease. J. Med. Chem., 52, 7249–7257 (2009).PubMedCrossRefGoogle Scholar
  9. Atwood, C. S., Obrenovich, M. E., Liu, T., Chan, H., Perry, G., Smith, M. A., and Martins, R. N., Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res. Brain Res. Rev., 43, 1–16 (2003).PubMedCrossRefGoogle Scholar
  10. Ballatore, C., Lee, V. M., and Trojanowski, J. Q., Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci., 8, 663–672 (2007).PubMedCrossRefGoogle Scholar
  11. Bazan, N. G., COX-2 as a multifunctional neuronal modulator. Nat. Med., 7, 414–415 (2001).PubMedCrossRefGoogle Scholar
  12. Bentham, P., Gray, R., Sellwood, E., Hills, R., Crome, P., and Raftery, J., Aspirin in Alzheimer’s disease (AD2000): a randomised open-label trial. Lancet Neurol., 7, 41–49 (2008).PubMedCrossRefGoogle Scholar
  13. Bernardo, A. and Minghetti, L., PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr. Pharm. Des., 12, 93–109 (2006).PubMedCrossRefGoogle Scholar
  14. Biber, K., Vinet, J., and Boddeke, H. W., Neuron-microglia signaling: chemokines as versatile messengers. J. Neuroimmunol., 198, 69–74 (2008).PubMedCrossRefGoogle Scholar
  15. Birks, J., Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev., CD005593 (2006).Google Scholar
  16. Blass, D. M. and Rabins, P. V., In the clinic. Dementia. Ann. Intern. Med., 148, ITC4-1–ITC4-16 (2008).Google Scholar
  17. Blennow, K., De Leon, M. J., and Zetterberg, H., Alzheimer’s disease. Lancet, 368, 387–403 (2006).PubMedCrossRefGoogle Scholar
  18. Boissonneault, V., Filali, M., Lessard, M., Relton, J., Wong, G., and Rivest, S., Powerful beneficial effects of macrophage colony-stimulating factor on beta-amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain, 132, 1078–1092 (2009).PubMedCrossRefGoogle Scholar
  19. Cai, X. D., Golde, T. E., and Younkin, S. G., Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science, 259, 514–516 (1993).PubMedCrossRefGoogle Scholar
  20. Cakala, M., Malik, A. R., and Strosznajder, J. B., Inhibitor of cyclooxygenase-2 protects against amyloid beta peptide-evoked memory impairment in mice. Pharmacol. Rep., 59, 164–172 (2007).PubMedGoogle Scholar
  21. Camacho, I. E., Serneels, L., Spittaels, K., Merchiers, P., Dominguez, D., and De Strooper, B., Peroxisome-proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J. Neurosci., 24, 10908–10917 (2004).PubMedCrossRefGoogle Scholar
  22. Chao, C. C., Hu, S., Sheng, W. S., Bu, D., Bukrinsky, M. I., and Peterson, P. K., Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia, 16, 276–284 (1996).PubMedCrossRefGoogle Scholar
  23. Cheng, S. Y. and Trombetta, L. D., The induction of amyloid precursor protein and alpha-synuclein in rat hippocampal astrocytes by diethyldithiocarbamate and copper with or without glutathione. Toxicol. Lett., 146, 139–149 (2004).PubMedCrossRefGoogle Scholar
  24. Chiu, C. C., Su, K. P., Cheng, T. C., Liu, H. C., Chang, C. J., Dewey, M. E., Stewart, R., and Huang, S. Y., The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 32, 1538–1544 (2008).PubMedCrossRefGoogle Scholar
  25. Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I., and Selkoe, D. J., Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature, 360, 672–674 (1992).PubMedCrossRefGoogle Scholar
  26. Citron, M., Vigo-Pelfrey, C., Teplow, D. B., Miller, C., Schenk, D., Johnston, J., Winblad, B., Venizelos, N., Lannfelt, L., and Selkoe, D. J., Excessive production of amyloid betaprotein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc. Natl. Acad. Sci. U.S.A., 91, 11993–11997 (1994).PubMedCrossRefGoogle Scholar
  27. Cole, G. M., Teter, B., and Frautschy, S. A., Neuroprotective effects of curcumin. Adv. Exp. Med. Biol., 595, 197–212 (2007).PubMedCrossRefGoogle Scholar
  28. Colton, C. A., Mott, R. T., Sharpe, H., Xu, Q., Van Nostrand, W. E., and Vitek, M. P., Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J. Neuroinflammation, 3, 27 (2006).PubMedCrossRefGoogle Scholar
  29. Combs, C. K., Johnson, D. E., Karlo, J. C., Cannady, S. B., and Landreth, G. E., Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPAR-gamma agonists. J. Neurosci., 20, 558–567 (2000).PubMedGoogle Scholar
  30. Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., Beal, M. F., and Wallace, D. C., Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet., 2, 324–329 (1992).PubMedCrossRefGoogle Scholar
  31. Couzin, J., Clinical trials. Halt of Celebrex study threatens drug’s future, other trials. Science, 306, 2170 (2004).PubMedCrossRefGoogle Scholar
  32. Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. C., and Mattson, M. P., Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A., 101, 2070–2075 (2004).PubMedCrossRefGoogle Scholar
  33. Czirr, E. and Weggen, S., Gamma-secretase modulation with Abeta42-lowering nonsteroidal anti-inflammatory drugs and derived compounds. Neurodegener. Dis., 3, 298–304 (2006).PubMedCrossRefGoogle Scholar
  34. Das, S. and Basu, A., Inflammation: a new candidate in modulating adult neurogenesis. J. Neurosci. Res., 86, 1199–1208 (2008).PubMedCrossRefGoogle Scholar
  35. Davis, S. and Laroche, S., What can rodent models tell us about cognitive decline in Alzheimer’s disease? Mol. Neurobiol., 27, 249–276 (2003).PubMedCrossRefGoogle Scholar
  36. De Haas, A. H., Van Weering, H. R., De Jong, E. K., Boddeke, H. W., and Biber, K. P., Neuronal chemokines: versatile messengers in central nervous system cell interaction. Mol. Neurobiol., 36, 137–151 (2007).PubMedCrossRefGoogle Scholar
  37. Dickson, D. W., The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol., 56, 321–339 (1997).PubMedCrossRefGoogle Scholar
  38. Dill, J., Patel, A. R., Yang, X. L., Bachoo, R., Powell, C. M., and Li, S., A molecular mechanism for ibuprofen-mediated RhoA inhibition in neurons. J. Neurosci., 30, 963–972 (2010).PubMedCrossRefGoogle Scholar
  39. Dyall, S. C., Michael, G. J., and Michael-Titus, A. T., Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J. Neurosci. Res., 88, 2091–2102 (2010).PubMedCrossRefGoogle Scholar
  40. Dzenko, K. A., Weltzien, R. B., and Pachter, J. S., Suppression of A beta-induced monocyte neurotoxicity by antiinflammatory compounds. J. Neuroimmunol., 80, 6–12 (1997).PubMedCrossRefGoogle Scholar
  41. Eikelenboom, P., Bate, C., Van Gool, W. A., Hoozemans, J. J., Rozemuller, J. M., Veerhuis, R., and Williams, A., Neuroinflammation in Alzheimer’s disease and prion disease. Glia, 40, 232–239 (2002).PubMedCrossRefGoogle Scholar
  42. El Khoury, J., Hickman, S. E., Thomas, C. A., Cao, L., Silverstein, S. C., and Loike, J. D., Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature, 382, 716–719 (1996).PubMedCrossRefGoogle Scholar
  43. Eriksen, J. L., Sagi, S. A., Smith, T. E., Weggen, S., Das, P., McLendon, D. C., Ozols, V. V., Jessing, K. W., Zavitz, K. H., Koo, E. H., and Golde, T. E., NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J. Clin. Invest., 112, 440–449 (2003).PubMedGoogle Scholar
  44. Ferri, C. P., Sousa, R., Albanese, E., Ribeiro, W. S., and Honyashiki, M., World Alzheimer Report 2009 — Executive Summary. In Prince, M. and Jackson, J. (Eds.). Alzheimer’s Disease International, London, pp. 1–22, (2009).Google Scholar
  45. Frederiksen, K., Thorpe, A., Richards, S. J., Waters, J., Dunnett, S. B., and Sandberg, B. E., Immortalized neural cells from trisomy 16 mice as models for Alzheimer’s disease. Ann. N. Y. Acad. Sci., 777, 415–420 (1996).PubMedCrossRefGoogle Scholar
  46. Freund-Levi, Y., Eriksdotter-Jonhagen, M., Cederholm, T., Basun, H., Faxen-Irving, G., Garlind, A., Vedin, I., Vessby, B., Wahlund, L. O., and Palmblad, J., Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch. Neurol., 63, 1402–1408 (2006).PubMedCrossRefGoogle Scholar
  47. Friedman, W. J., Cytokines regulate expression of the type 1 interleukin-1 receptor in rat hippocampal neurons and glia. Exp. Neurol., 168, 23–31 (2001).PubMedCrossRefGoogle Scholar
  48. Fu, Q., Hue, J., and Li, S., Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition. J. Neurosci., 27, 4154–4164 (2007).PubMedCrossRefGoogle Scholar
  49. Gala, M., Sun, R., and Yang, V. W., Inhibition of cell transformation by sulindac sulfide is confined to specific oncogenic pathways. Cancer Lett., 175, 89–94 (2002).PubMedCrossRefGoogle Scholar
  50. Garcia-Alloza, M., Borrelli, L. A., Rozkalne, A., Hyman, B. T., and Bacskai, B. J., Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem., 102, 1095–1104 (2007).PubMedCrossRefGoogle Scholar
  51. Giaccone, G., Tagliavini, F., Linoli, G., Bouras, C., Frigerio, L., Frangione, B., and Bugiani, O., Down patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques. Neurosci. Lett., 97, 232–238 (1989).PubMedCrossRefGoogle Scholar
  52. Goedert, M., Klug, A., and Crowther, R. A., Tau protein, the paired helical filament and Alzheimer’s disease. J. Alzheimers Dis., 9, 195–207 (2006).PubMedGoogle Scholar
  53. Gomez-Isla, T., Blesa, R., Boada, M., Clarimon, J., Del Ser, T., Domenech, G., Ferro, J. M., Gomez-Anson, B., Manubens, J. M., Martinez-Lage, J. M., Munoz, D., Pena-Casanova, J., and Torres, F., A randomized, double-blind, placebo controlled-trial of triflusal in mild cognitive impairment: the TRIMCI study. Alzheimer Dis. Assoc. Disord., 22, 21–29 (2008).PubMedCrossRefGoogle Scholar
  54. Gottschall, P. E., beta-Amyloid induction of gelatinase B secretion in cultured microglia: inhibition by dexamethasone and indomethacin. Neuroreport, 7, 3077–3080 (1996).PubMedCrossRefGoogle Scholar
  55. Guglielmotto, M., Giliberto, L., Tamagno, E., and Tabaton, M., Oxidative stress mediates the pathogenic effect of different Alzheimer’s disease risk factors. Front. Aging Neurosci., 2, 3 (2010).PubMedGoogle Scholar
  56. Haass, C. and De Strooper, B., The presenilins in Alzheimer’s disease—proteolysis holds the key. Science, 286, 916–919 (1999).PubMedCrossRefGoogle Scholar
  57. Haass, C. and Selkoe, D. J., Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol., 8, 101–112 (2007).PubMedCrossRefGoogle Scholar
  58. Harman, D., Free radical theory of aging. Mutat. Res., 275, 257–266 (1992).PubMedGoogle Scholar
  59. Hauss-Wegrzyniak, B., Dobrzanski, P., Stoehr, J. D., and Wenk, G. L., Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res., 780, 294–303 (1998).PubMedCrossRefGoogle Scholar
  60. Hauss-Wegrzyniak, B., Galons, J. P., and Wenk, G. L., Quantitative volumetric analyses of brain magnetic resonance imaging from rat with chronic neuroinflammation. Exp. Neurol., 165, 347–354 (2000).PubMedCrossRefGoogle Scholar
  61. Hauss-Wegrzyniak, B., Lynch, M. A., Vraniak, P. D., and Wenk, G. L., Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp. Neurol., 176, 336–341 (2002).PubMedCrossRefGoogle Scholar
  62. Heneka, M. T., Wiesinger, H., Dumitrescu-Ozimek, L., Riederer, P., Feinstein, D. L., and Klockgether, T., Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J. Neuropathol. Exp. Neurol., 60, 906–916 (2001).PubMedGoogle Scholar
  63. Heneka, M. T., Sastre, M., Dumitrescu-Ozimek, L., Hanke, A., Dewachter, I., Kuiperi, C., O’Banion, K., Klockgether, T., Van Leuven, F., and Landreth, G. E., Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain, 128, 1442–1453 (2005).PubMedCrossRefGoogle Scholar
  64. Herrmann, C., Block, C., Geisen, C., Haas, K., Weber, C., Winde, G., Moroy, T., and Muller, O., Sulindac sulfide inhibits Ras signaling. Oncogene, 17, 1769–1776 (1998).PubMedCrossRefGoogle Scholar
  65. Hickman, S. E., Allison, E. K., and El Khoury, J., Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci., 28, 8354–8360 (2008).PubMedCrossRefGoogle Scholar
  66. Hoshino, T., Namba, T., Takehara, M., Nakaya, T., Sugimoto, Y., Araki, W., Narumiya, S., Suzuki, T., and Mizushima, T., Prostaglandin E2 stimulates the production of amyloidbeta peptides through internalization of the EP4 receptor. J. Biol. Chem., 284, 18493–18502 (2009).PubMedCrossRefGoogle Scholar
  67. Hu, J., Akama, K. T., Krafft, G. A., Chromy, B. A., and Van Eldik, L. J., Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res., 785, 195–206 (1998).PubMedCrossRefGoogle Scholar
  68. Hwang, D. Y., Chae, K. R., Kang, T. S., Hwang, J. H., Lim, C. H., Kang, H. K., Goo, J. S., Lee, M. R., Lim, H. J., Min, S. H., Cho, J. Y., Hong, J. T., Song, C. W., Paik, S. G., Cho, J. S., and Kim, Y. K., Alterations in behavior, amyloid beta-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer’s disease. FASEB J., 16, 805–813 (2002).PubMedCrossRefGoogle Scholar
  69. In T’ Veld, B. A., Ruitenberg, A., Hofman, A., Launer, L. J., Van Duijn, C. M., Stijnen, T., Breteler, M. M., and Stricker, B. H., Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N. Engl. J. Med., 345, 1515–1521 (2001).CrossRefGoogle Scholar
  70. Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C. X., Khatoon, S., Li, B., Liu, F., Rahman, A., Tanimukai, H., and Grundke-Iqbal, I., Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta, 1739, 198–210 (2005).PubMedGoogle Scholar
  71. Iqbal, K., Liu, F., Gong, C. X., Alonso Adel, C., and Grundke-Iqbal, I., Mechanisms of tau-induced neurodegeneration. Acta Neuropathol., 118, 53–69 (2009).PubMedCrossRefGoogle Scholar
  72. Jacob, A., Wu, R., Zhou, M., and Wang, P., Mechanism of the Anti-inflammatory Effect of Curcumin: PPAR-gamma Activation. PPAR Res., 2007, 89369 (2007).PubMedGoogle Scholar
  73. Jaradat, M. S., Wongsud, B., Phornchirasilp, S., Rangwala, S. M., Shams, G., Sutton, M., Romstedt, K. J., Noonan, D. J., and Feller, D. R., Activation of peroxisome proliferators-activated receptor isoforms and inhibition of prostaglandin H(2) synthases by ibuprofen, naproxen, and indomethacin. Biochem. Pharmacol., 62, 1587–1595 (2001).PubMedCrossRefGoogle Scholar
  74. Jiang, C., Ting, A. T., and Seed, B., PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature, 391, 82–86 (1998).PubMedCrossRefGoogle Scholar
  75. Jiang, Q., Heneka, M., and Landreth, G. E., The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer’s disease: therapeutic implications. CNS Drugs, 22, 1–14 (2008).PubMedCrossRefGoogle Scholar
  76. Jimenez, S., Baglietto-Vargas, D., Caballero, C., Moreno-Gonzalez, I., Torres, M., Sanchez-Varo, R., Ruano, D., Vizuete, M., Gutierrez, A., and Vitorica, J., Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J. Neurosci., 28, 11650–11661 (2008).PubMedCrossRefGoogle Scholar
  77. Johnstone, M., Gearing, A. J., and Miller, K. M., A central role for astrocytes in the inflammatory response to betaamyloid; chemokines, cytokines and reactive oxygen species are produced. J. Neuroimmunol., 93, 182–193 (1999).PubMedCrossRefGoogle Scholar
  78. Kashfi, K. and Rigas, B., Non-COX-2 targets and cancer: expanding the molecular target repertoire of chemoprevention. Biochem. Pharmacol., 70, 969–986 (2005).PubMedCrossRefGoogle Scholar
  79. Kern, A. and Behl, C., The unsolved relationship of brain aging and late-onset Alzheimer disease. Biochim. Biophys. Acta, 1790, 1124–1132 (2009).PubMedGoogle Scholar
  80. Kim, T. I., Lee, Y. K., Park, S. G., Choi, I. S., Ban, J. O., Park, H. K., Nam, S. Y., Yun, Y. W., Han, S. B., Oh, K. W., and Hong, J. T., l-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways. Free Radic. Biol. Med., 47, 1601–1610 (2009).PubMedCrossRefGoogle Scholar
  81. Kitazawa, M., Yamasaki, T. R., and Laferla, F. M., Microglia as a potential bridge between the amyloid beta-peptide and tau. Ann. N. Y. Acad. Sci., 1035, 85–103 (2004).PubMedCrossRefGoogle Scholar
  82. Klegeris, A., Walker, D. G., and McGeer, P. L., Toxicity of human THP-1 monocytic cells towards neuron-like cells is reduced by non-steroidal anti-inflammatory drugs (NSAIDs). Neuropharmacology, 38, 1017–1025 (1999).PubMedCrossRefGoogle Scholar
  83. Klein, R. L., Dayton, R. D., Diaczynsky, C. G., and Wang, D. B., Pronounced microgliosis and neurodegeneration in aged rats after tau gene transfer. Neurobiol. Aging, (2009).Google Scholar
  84. Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K. R., and Paul, S. M., Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat. Med., 10, 719–726 (2004).PubMedCrossRefGoogle Scholar
  85. Kotilinek, L. A., Westerman, M. A., Wang, Q., Panizzon, K., Lim, G. P., Simonyi, A., Lesne, S., Falinska, A., Younkin, L. H., Younkin, S. G., Rowan, M., Cleary, J., Wallis, R. A., Sun, G. Y., Cole, G., Frautschy, S., Anwyl, R., and Ashe, K. H., Cyclooxygenase-2 inhibition improves amyloidbeta-mediated suppression of memory and synaptic plasticity. Brain, 131, 651–664 (2008).PubMedCrossRefGoogle Scholar
  86. Kukar, T., Murphy, M. P., Eriksen, J. L., Sagi, S. A., Weggen, S., Smith, T. E., Ladd, T., Khan, M. A., Kache, R., Beard, J., Dodson, M., Merit, S., Ozols, V. V., Anastasiadis, P. Z., Das, P., Fauq, A., Koo, E. H., and Golde, T. E., Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Abeta42 production. Nat. Med., 11, 545–550 (2005).PubMedCrossRefGoogle Scholar
  87. Kukar, T. L., Ladd, T. B., Bann, M. A., Fraering, P. C., Narlawar, R., Maharvi, G. M., Healy, B., Chapman, R., Welzel, A. T., Price, R. W., Moore, B., Rangachari, V., Cusack, B., Eriksen, J., Jansen-West, K., Verbeeck, C., Yager, D., Eckman, C., Ye, W., Sagi, S., Cottrell, B. A., Torpey, J., Rosenberry, T. L., Fauq, A., Wolfe, M. S., Schmidt, B., Walsh, D. M., Koo, E. H., and Golde, T. E., Substrate-targeting gamma-secretase modulators. Nature, 453, 925–929 (2008).PubMedCrossRefGoogle Scholar
  88. Kurt, M. A., Davies, D. C., and Kidd, M., beta-Amyloid immunoreactivity in astrocytes in Alzheimer’s disease brain biopsies: an electron microscope study. Exp. Neurol., 158, 221–228 (1999).PubMedCrossRefGoogle Scholar
  89. Landreth, G., Therapeutic use of agonists of the nuclear receptor PPARgamma in Alzheimer’s disease. Curr. Alzheimer Res., 4, 159–164 (2007).PubMedCrossRefGoogle Scholar
  90. Landreth, G. E. and Heneka, M. T., Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer’s disease. Neurobiol. Aging, 22, 937–944 (2001).PubMedCrossRefGoogle Scholar
  91. Lee, J. W., Lee, Y. K., Yuk, D. Y., Choi, D. Y., Ban, S. B., Oh, K. W., and Hong, J. T., Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J. Neuroinflammation, 5, 37 (2008).PubMedCrossRefGoogle Scholar
  92. Lee, J. W., Lee, Y. K., Ban, J. O., Ha, T. Y., Yun, Y. P., Han, S. B., Oh, K. W., and Hong, J. T., Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J. Nutr., 139, 1987–1993 (2009a).PubMedCrossRefGoogle Scholar
  93. Lee, S. Y., Lee, J. W., Lee, H., Yoo, H. S., Yun, Y. P., Oh, K. W., Ha, T. Y., and Hong, J. T., Inhibitory effect of green tea extract on beta-amyloid-induced PC12 cell death by inhibition of the activation of NF-kappaB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Brain Res. Mol. Brain Res., 140, 45–54 (2005).PubMedCrossRefGoogle Scholar
  94. Lee, S. Y., Hwang, D. Y., Kim, Y. K., Lee, J. W., Shin, I. C., Oh, K. W., Lee, M. K., Lim, J. S., Yoon, D. Y., Hwang, S. J., and Hong, J. T., PS2 mutation increases neuronal cell vulnerability to neurotoxicants through activation of caspase-3 by enhancing of ryanodine receptor-mediated calcium release. FASEB J., 20, 151–153 (2006).PubMedCrossRefGoogle Scholar
  95. Lee, Y. K., Yuk, D. Y., Lee, J. W., Lee, S. Y., Ha, T. Y., Oh, K. W., Yun, Y. P., and Hong, J. T., (-)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res., 1250, 164–174 (2009b).PubMedCrossRefGoogle Scholar
  96. Lehmann, J. M., Lenhard, J. M., Oliver, B. B., Ringold, G. M., and Kliewer, S. A., Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem., 272, 3406–3410 (1997).PubMedCrossRefGoogle Scholar
  97. Li, H., Ruan, X. Z., Powis, S. H., Fernando, R., Mon, W. Y., Wheeler, D. C., Moorhead, J. F., and Varghese, Z., EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int., 67, 867–874 (2005).PubMedCrossRefGoogle Scholar
  98. Li, Y., Barger, S. W., Liu, L., Mrak, R. E., and Griffin, W. S., S100beta induction of the proinflammatory cytokine interleukin-6 in neurons. J. Neurochem., 74, 143–150 (2000).PubMedGoogle Scholar
  99. Lieberman, J. A., Javitch, J. A., and Moore, H., Cholinergic agonists as novel treatments for schizophrenia: the promise of rational drug development for psychiatry. Am. J. Psychiatry, 165, 931–936 (2008).PubMedCrossRefGoogle Scholar
  100. Lim, G. P., Yang, F., Chu, T., Chen, P., Beech, W., Teter, B., Tran, T., Ubeda, O., Ashe, K. H., Frautschy, S. A., and Cole, G. M., Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci., 20, 5709–5714 (2000).PubMedGoogle Scholar
  101. Lin, J. and Chen, A., Activation of peroxisome proliferators-activated receptor-gamma by curcumin blocks the signaling pathways for PDGF and EGF in hepatic stellate cells. Lab. Invest., 88, 529–540 (2008).PubMedCrossRefGoogle Scholar
  102. Lleo, A., Galea, E., and Sastre, M., Molecular targets of nonsteroidal anti-inflammatory drugs in neurodegenerative diseases. Cell. Mol. Life Sci., 64, 1403–1418 (2007).PubMedCrossRefGoogle Scholar
  103. Lossinsky, A. S. and Shivers, R. R., Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Review. Histol. Histopathol., 19, 535–564 (2004).PubMedGoogle Scholar
  104. Lucin, K. M. and Wyss-Coray, T., Immune activation in brain aging and neurodegeneration: too much or too little? Neuron, 64, 110–122 (2009).PubMedCrossRefGoogle Scholar
  105. Lue, L. F., Walker, D. G., Brachova, L., Beach, T. G., Rogers, J., Schmidt, A. M., Stern, D. M., and Yan, S. D., Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp. Neurol., 171, 29–45 (2001).PubMedCrossRefGoogle Scholar
  106. Lyketsos, C. G., Breitner, J. C., Green, R. C., Martin, B. K., Meinert, C., Piantadosi, S., and Sabbagh, M., Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology, 68, 1800–1808 (2007).PubMedCrossRefGoogle Scholar
  107. Mann, D. M. and Esiri, M. M., The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J. Neurol. Sci., 89, 169–179 (1989).PubMedCrossRefGoogle Scholar
  108. Maragakis, N. J. and Rothstein, J. D., Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat. Clin. Pract. Neurol., 2, 679–689 (2006).PubMedCrossRefGoogle Scholar
  109. Maramband, P. Chevallier, N., Ancolio, K., and Checler, F., Post-transcriptional contribution of a cAMP-dependent pathway to the formation of α- and β/γ-secretases-derived products of βAPP maturation in human cells expressing wild-type and Swedish mutated βAPP. Mol. Med., 4, 715–723 (1998).Google Scholar
  110. Mattson, M. P., Maudsley, S., and Martin, B., A neural signaling triumvirate that influences ageing and agerelated disease: insulin/IGF-1, BDNF and serotonin. Ageing Res. Rev., 3, 445–464 (2004).PubMedCrossRefGoogle Scholar
  111. Mayeux, R., Ottman, R., Maestre, G., Ngai, C., Tang, M. X., Ginsberg, H., Chun, M., Tycko, B., and Shelanski, M., Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer’s disease. Neurology, 45, 555–557 (1995).PubMedGoogle Scholar
  112. McGeer, E. G. and McGeer, P. L., Inflammatory processes in Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 27, 741–749 (2003).PubMedCrossRefGoogle Scholar
  113. McGeer, P. L. and Rogers, J., Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology, 42, 447–449 (1992).PubMedGoogle Scholar
  114. McGeer, P. L. and McGeer, E. G., The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev., 21, 195–218 (1995).PubMedCrossRefGoogle Scholar
  115. McGeer, P. L. and McGeer, E. G., Inflammation, autotoxicity and Alzheimer disease. Neurobiol. Aging, 22, 799–809 (2001).PubMedCrossRefGoogle Scholar
  116. McNaull, B. B., Todd, S., McGuinness, B., and Passmore, A. P., Inflammation and anti-inflammatory strategies for Alzheimer’s disease—a mini-review. Gerontology, 56, 3–14 (2010).PubMedCrossRefGoogle Scholar
  117. Meyer-Luehmann, M., Spires-Jones, T. L., Prada, C., Garcia-Alloza, M., De Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D. M., Bacskai, B. J., and Hyman, B. T., Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature, 451, 720–724 (2008).PubMedCrossRefGoogle Scholar
  118. Moore, A. H., Olschowka, J. A., Williams, J. P., Okunieff, P., and O’Banion, M. K., Regulation of prostaglandin E2 synthesis after brain irradiation. Int. J. Radiat. Oncol. Biol. Phys., 62, 267–272 (2005).PubMedCrossRefGoogle Scholar
  119. Mori, T., Koyama, N., Arendash, G. W., Horikoshi-Sakuraba, Y., Tan, J., and Town, T., Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease. Glia, 58, 300–314 (2009).Google Scholar
  120. Morihara, T., Chu, T., Ubeda, O., Beech, W., and Cole, G. M., Selective inhibition of Abeta42 production by NSAID Renantiomers. J. Neurochem., 83, 1009–1012 (2002).PubMedCrossRefGoogle Scholar
  121. Mott, R. T., Ait-Ghezala, G., Town, T., Mori, T., Vendrame, M., Zeng, J., Ehrhart, J., Mullan, M., and Tan, J., Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia, 46, 369–379 (2004).PubMedCrossRefGoogle Scholar
  122. Mrak, R. E. and Griffinbc, W. S., The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease. Neurobiol. Aging, 22, 915–922 (2001).PubMedCrossRefGoogle Scholar
  123. Murakami, K., Irie, K., Ohigashi, H., Hara, H., Nagao, M., Shimizu, T., and Shirasawa, T., Formation and stabilization model of the 42-mer Abeta radical: implications for the long-lasting oxidative stress in Alzheimer’s disease. J. Am. Chem. Soc., 127, 15168–15174 (2005).PubMedCrossRefGoogle Scholar
  124. Murray, I. V., Liu, L., Komatsu, H., Uryu, K., Xiao, G., Lawson, J. A., and Axelsen, P. H., Membrane-mediated amyloidogenesis and the promotion of oxidative lipid damage by amyloid beta proteins. J. Biol. Chem., 282, 9335–9345 (2007).PubMedCrossRefGoogle Scholar
  125. Nagele, R. G., D’Andrea, M. R., Lee, H., Venkataraman, V., and Wang, H. Y., Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res., 971, 197–209 (2003).PubMedCrossRefGoogle Scholar
  126. Netland, E. E., Newton, J. L., Majocha, R. E., and Tate, B. A., Indomethacin reverses the microglial response to amyloid beta-protein. Neurobiol. Aging, 19, 201–204 (1998).PubMedCrossRefGoogle Scholar
  127. Neumann, K. F., Rojo, L., Navarrete, L. P., Farias, G., Reyes, P., and Maccioni, R. B., Insulin resistance and Alzheimer’s disease: molecular links & clinical implications. Curr. Alzheimer Res., 5, 438–447 (2008).PubMedCrossRefGoogle Scholar
  128. Nilsson, L. N., Das, S., and Potter, H., Effect of cytokines, dexamethasone and the A/T-signal peptide polymorphism on the expression of alpha(1)-antichymotrypsin in astrocytes: significance for Alzheimer’s disease. Neurochem. Int., 39, 361–370 (2001).PubMedCrossRefGoogle Scholar
  129. Nunan, J. and Small, D. H., Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett., 483, 6–10 (2000).PubMedCrossRefGoogle Scholar
  130. Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., Jones, P. K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C. S., Petersen, R. B., and Smith, M. A., Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol., 60, 759–767 (2001).PubMedGoogle Scholar
  131. Pasinetti, G. M. and Aisen, P. S., Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience, 87, 319–324 (1998).PubMedCrossRefGoogle Scholar
  132. Patil, S., Sheng, L., Masserang, A., and Chan, C., Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons. Neurosci. Lett., 406, 55–59 (2006).PubMedCrossRefGoogle Scholar
  133. Pavlov, V. A. and Tracey, K. J., The cholinergic anti-inflammatory pathway. Brain Behav. Immun., 19, 493–499 (2005).PubMedCrossRefGoogle Scholar
  134. Pedersen, W. A., McMillan, P. J., Kulstad, J. J., Leverenz, J. B., Craft, S., and Haynatzki, G. R., Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp. Neurol., 199, 265–273 (2006).PubMedCrossRefGoogle Scholar
  135. Perry, G., Nunomura, A., Hirai, K., Takeda, A., Aliev, G., and Smith, M. A., Oxidative damage in Alzheimer’s disease: the metabolic dimension. Int. J. Dev. Neurosci., 18, 417–421 (2000).PubMedCrossRefGoogle Scholar
  136. Pratico, D. and Trojanowski, J. Q., Inflammatory hypotheses: novel mechanisms of Alzheimer’s neurodegeneration and new therapeutic targets? Neurobiol. Aging, 21, 441–445; discussion 451–453 (2000).PubMedCrossRefGoogle Scholar
  137. Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A., and Herms, J., Synapse formation and function is modulated by the amyloid precursor protein. J. Neurosci., 26, 7212–7221 (2006).PubMedCrossRefGoogle Scholar
  138. Prosperi, C., Scali, C., Barba, M., Bellucci, A., Giovannini, M. G., Pepeu, G., and Casamenti, F., Comparison between flurbiprofen and its nitric oxide-releasing derivatives HCT-1026 and NCX-2216 on Abeta(1–42)-induced brain inflammation and neuronal damage in the rat. Int. J. Immunopathol. Pharmacol., 17, 317–330 (2004).PubMedGoogle Scholar
  139. Qaseem, A., Snow, V., Cross, J. T., Jr., Forciea, M. A., Hopkins, R., Jr., Shekelle, P., Adelman, A., Mehr, D., Schellhase, K., Campos-Outcalt, D., Santaguida, P., and Owens, D. K., Current pharmacologic treatment of dementia: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann. Intern. Med., 148, 370–378 (2008).PubMedGoogle Scholar
  140. Raina, P., Santaguida, P., Ismaila, A., Patterson, C., Cowan, D., Levine, M., Booker, L., and Oremus, M., Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann. Intern. Med., 148, 379–397 (2008).PubMedGoogle Scholar
  141. Raschetti, R., Albanese, E., Vanacore, N., and Maggini, M., Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med., 4, e338 (2007).PubMedCrossRefGoogle Scholar
  142. Reid, G., Wielinga, P., Zelcer, N., Van der heijden, I., Kuil, A., De Haas, M., Wijnholds, J., and Borst, P., The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc. Natl. Acad. Sci. U.S.A., 100, 9244–9249 (2003).PubMedCrossRefGoogle Scholar
  143. Reines, S. A., Block, G. A., Morris, J. C., Liu, G., Nessly, M. L., Lines, C. R., Norman, B. A., and Baranak, C. C., Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology, 62, 66–71 (2004).PubMedGoogle Scholar
  144. Rich, J. B., Rasmusson, D. X., Folstein, M. F., Carson, K. A., Kawas, C., and Brandt, J., Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. Neurology, 45, 51–55 (1995).PubMedGoogle Scholar
  145. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., and Glass, C. K., The peroxisome proliferator-activated receptorgamma is a negative regulator of macrophage activation. Nature, 391, 79–82 (1998).PubMedCrossRefGoogle Scholar
  146. Rinaldi, P., Polidori, M. C., Metastasio, A., Mariani, E., Mattioli, P., Cherubini, A., Catani, M., Cecchetti, R., Senin, U., and Mecocci, P., Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol. Aging, 24, 915–919 (2003).PubMedCrossRefGoogle Scholar
  147. Risner, M. E., Saunders, A. M., Altman, J. F., Ormandy, G. C., Craft, S., Foley, I. M., Zvartau-Hind, M. E., Hosford, D. A., and Roses, A. D., Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J., 6, 246–254 (2006).PubMedGoogle Scholar
  148. Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L., Kaszniak, A. W., Zalinski, J., Cofield, M., Mansukhani, L., Willson, P., and Kogan, F., Clinical trial of indomethacin in Alzheimer’s disease. Neurology, 43, 1609–1611 (1993).PubMedGoogle Scholar
  149. Rogers, J. and Lue, L. F., Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer’s disease. Neurochem. Int., 39, 333–340 (2001).PubMedCrossRefGoogle Scholar
  150. Rojo, L. E., Fernandez, J. A., Maccioni, A. A., Jimenez, J. M., and Maccioni, R. B., Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch. Med. Res., 39, 1–16 (2008).PubMedCrossRefGoogle Scholar
  151. Rountree, S. D., Chan, W., Pavlik, V. N., Darby, E. J., Siddiqui, S., and Doody, R. S., Persistent treatment with cholinesterase inhibitors and/or memantine slows clinical progression of Alzheimer disease. Alzheimers Res. Ther., 1, 7 (2009).PubMedCrossRefGoogle Scholar
  152. Roy, S., Zhang, B., Lee, V. M., and Trojanowski, J. Q., Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol., 109, 5–13 (2005).PubMedCrossRefGoogle Scholar
  153. Sastre, M., Dewachter, I., Rossner, S., Bogdanovic, N., Rosen, E., Borghgraef, P., Evert, B. O., Dumitrescu-Ozimek, L., Thal, D. R., Landreth, G., Walter, J., Klockgether, T., Van Leuven, F., and Heneka, M. T., Nonsteroidal antiinflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc. Natl. Acad. Sci. U.S.A., 103, 443–448 (2006).PubMedCrossRefGoogle Scholar
  154. Sastre, M., Walter, J., and Gentleman, S. M., Interactions between APP secretases and inflammatory mediators. J. Neuroinflammation, 5, 25 (2008).PubMedCrossRefGoogle Scholar
  155. Sato, T., Hanyu, H., Hirao, K., Kanetaka, H., Sakurai, H., and Iwamoto, T., Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease. Neurobiol. Aging, (2009).Google Scholar
  156. Schaefer, E. J., Bongard, V., Beiser, A. S., Lamon-Fava, S., Robins, S. J., Au, R., Tucker, K. L., Kyle, D. J., Wilson, P. W., and Wolf, P. A., Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch. Neurol., 63, 1545–1550 (2006).PubMedCrossRefGoogle Scholar
  157. Scharf, S., Mander, A., Ugoni, A., Vajda, F., and Christophidis, N., A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease. Neurology, 53, 197–201 (1999).PubMedGoogle Scholar
  158. Schlachetzki, J. C., Fiebich, B. L., Haake, E., De Oliveira, A. C., Candelario-Jalil, E., Heneka, M. T., and Hull, M., Norepinephrine enhances the LPS-induced expression of COX-2 and secretion of PGE2 in primary rat microglia. J. Neuroinflammation, 7, 2 (2010).PubMedCrossRefGoogle Scholar
  159. Shen, Y., Li, R., McGeer, E. G., and McGeer, P. L., Neuronal expression of mRNAs for complement proteins of the classical pathway in Alzheimer brain. Brain Res., 769, 391–395 (1997).PubMedCrossRefGoogle Scholar
  160. Shin, D. W., Kim, S. N., Lee, S. M., Lee, W., Song, M. J., Park, S. M., Lee, T. R., Baik, J. H., Kim, H. K., Hong, J. H., and Noh, M., (−)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem. Pharmacol., 77, 125–133 (2009).PubMedCrossRefGoogle Scholar
  161. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P., and Rivest, S., Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron, 49, 489–502 (2006).PubMedCrossRefGoogle Scholar
  162. Simic, G., Lucassen, P. J., Krsnik, Z., Kruslin, B., Kostovic, I., Winblad, B., and Bogdanovi, nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer’s disease. Exp. Neurol., 165, 12–26 (2000).PubMedCrossRefGoogle Scholar
  163. Smith, W. L., DeWitt, D. L., and Garavito, R. M., Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem., 69, 145–182 (2000).PubMedCrossRefGoogle Scholar
  164. Smits, H. A., Rijsmus, A., Van Loon, J. H., Wat, J. W., Verhoef, J., Boven, L. A., and Nottet, H. S., Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. J. Neuroimmunol., 127, 160–168 (2002).PubMedCrossRefGoogle Scholar
  165. Soininen, H., West, C., Robbins, J., and Niculescu, L., Longterm efficacy and safety of celecoxib in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 23, 8–21 (2007).PubMedCrossRefGoogle Scholar
  166. Stahl, S. M., The new cholinesterase inhibitors for Alzheimer’s disease, Part 2: illustrating their mechanisms of action. J. Clin. Psychiatry, 61, 813–814 (2000).PubMedCrossRefGoogle Scholar
  167. Stewart, W. F., Kawas, C., Corrada, M., and Metter, E. J., Risk of Alzheimer’s disease and duration of NSAID use. Neurology, 48, 626–632 (1997).PubMedGoogle Scholar
  168. Streit, W. J., Walter, S. A., and Pennell, N. A., Reactive microgliosis. Prog. Neurobiol., 57, 563–581 (1999).PubMedCrossRefGoogle Scholar
  169. Strohmeyer, R., Shen, Y., and Rogers, J., Detection of complement alternative pathway mRNA and proteins in the Alzheimer’s disease brain. Brain Res. Mol. Brain Res., 81, 7–18 (2000).PubMedCrossRefGoogle Scholar
  170. Sundararajan, S., Jiang, Q., Heneka, M., and Landreth, G., PPARgamma as a therapeutic target in central nervous system diseases. Neurochem. Int., 49, 136–144 (2006).PubMedCrossRefGoogle Scholar
  171. Tabner, B. J., El-Agnaf, O. M., Turnbull, S., German, M. J., Paleologou, K. E., Hayashi, Y., Cooper, L. J., Fullwood, N. J., and Allsop, D., Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J. Biol. Chem., 280, 35789–35792 (2005).PubMedCrossRefGoogle Scholar
  172. Tamagno, E., Bardini, P., Obbili, A., Vitali, A., Borghi, R., Zaccheo, D., Pronzato, M. A., Danni, O., Smith, M. A., Perry, G., and Tabaton, M., Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol. Dis., 10, 279–288 (2002).PubMedCrossRefGoogle Scholar
  173. Tansey, M. G., McCoy, M. K., and Frank-Cannon, T. C., Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol., 208, 1–25 (2007).PubMedCrossRefGoogle Scholar
  174. Taupin, P., Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells. Int. J. Med. Sci., 5, 127–132 (2008).PubMedGoogle Scholar
  175. Tchelingerian, J. L., Le Saux, F., and Jacque, C., Identification and topography of neuronal cell populations expressing TNF alpha and IL-1 alpha in response to hippocampal lesion. J. Neurosci. Res., 43, 99–106 (1996).PubMedCrossRefGoogle Scholar
  176. Thal, L. J., Ferris, S. H., Kirby, L., Block, G. A., Lines, C. R., Yuen, E., Assaid, C., Nessly, M. L., Norman, B. A., Baranak, C. C., and Reines, S. A., A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology, 30, 1204–1215 (2005).PubMedCrossRefGoogle Scholar
  177. Tomozawa, Y., Inoue, T., Takahashi, M., Adachi, M., and Satoh, M., Apoptosis of cultured microglia by the deprivation of macrophage colony-stimulating factor. Neurosci. Res., 25, 7–15 (1996).PubMedCrossRefGoogle Scholar
  178. Tong, Y., Zhou, W., Fung, V., Christensen, M. A., Qing, H., Sun, X., and Song, W., Oxidative stress potentiates BACE1 gene expression and Abeta generation. J. Neural. Transm., 112, 455–469 (2005).PubMedCrossRefGoogle Scholar
  179. Trinh, N. H., Hoblyn, J., Mohanty, S., and Yaffe, K., Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease: a meta-analysis. JAMA, 289, 210–216 (2003).PubMedCrossRefGoogle Scholar
  180. Trojanowski, J. Q., Smith, A. B., Huryn, D., and Lee, V. M., Microtubule-stabilising drugs for therapy of Alzheimer’s disease and other neurodegenerative disorders with axonal transport impairments. Expert Opin. Pharmacother., 6, 683–686 (2005).PubMedCrossRefGoogle Scholar
  181. Tuppo, E. E. and Arias, H. R., The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol., 37, 289–305 (2005).PubMedCrossRefGoogle Scholar
  182. Turner, P. R., O’Connor, K., Tate, W. P., and Abraham, W. C., Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol., 70, 1–32 (2003).PubMedCrossRefGoogle Scholar
  183. Uryu, K., Laurer, H., Mcintosh, T., Pratico, D., Martinez, D., Leight, S., Lee, V. M., and Trojanowski, J. Q., Repetitive mild brain trauma accelerates Abeta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J. Neurosci., 22, 446–454 (2002).PubMedGoogle Scholar
  184. Vane, J. R., Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol., 231, 232–235 (1971).PubMedGoogle Scholar
  185. Waldemar, G., Dubois, B., Emre, M., Georges, J., McKeith, I. G., Rossor, M., Scheltens, P., Tariska, P., and Winblad, B., Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur. J. Neurol., 14, e1-26 (2007).Google Scholar
  186. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539 (2002).PubMedCrossRefGoogle Scholar
  187. Wang, D. B., Dayton, R. D., Zweig, R. M., and Klein, R. L., Transcriptome analysis of a tau overexpression model in rats implicates an early pro-inflammatory response. Exp. Neurol., 224, 197–206 (2010).PubMedCrossRefGoogle Scholar
  188. Warner, T. D. and Mitchell, J. A., Nonsteroidal antiinflammatory drugs inhibiting prostanoid efflux: as easy as ABC? Proc. Natl. Acad. Sci. U.S.A., 100, 9108–9110 (2003).PubMedCrossRefGoogle Scholar
  189. Watson, G. S., Cholerton, B. A., Reger, M. A., Baker, L. D., Plymate, S. R., Asthana, S., Fishel, M. A., Kulstad, J. J., Green, P. S., Cook, D. G., Kahn, S. E., Keeling, M. L., and Craft, S., Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am. J. Geriatr. Psychiatry, 13, 950–958 (2005).PubMedGoogle Scholar
  190. Weggen, S., Eriksen, J. L., Das, P., Sagi, S. A., Wang, R., Pietrzik, C. U., Findlay, K. A., Smith, T. E., Murphy, M. P., Bulter, T., Kang, D. E., Marquez-Sterling, N., Golde, T. E., and Koo, E. H., A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature, 414, 212–216 (2001).PubMedCrossRefGoogle Scholar
  191. Wilcock, G. K., Black, S. E., Hendrix, S. B., Zavitz, K. H., Swabb, E. A., and Laughlin, M. A., Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: a randomised phase II trial. Lancet Neurol., 7, 483–493 (2008).PubMedCrossRefGoogle Scholar
  192. Wyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., Silverstein, S. C., and Husemann, J., Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med., 9, 453–457 (2003).PubMedCrossRefGoogle Scholar
  193. Wyss-Coray, T., Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med., 12, 1005–1015 (2006).PubMedGoogle Scholar
  194. Xu, H., Sweeney, D., Greengard, P., and Gandy, S., Metabolism of Alzheimer β-amyloid precursor protein: regulation by protein kinase A in intact cells and in a cellfree system. Proc. Natl. Acad. Sci. U.S.A., 93, 4081–4084 (1996).PubMedCrossRefGoogle Scholar
  195. Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., Frautschy, S. A., and Cole, G. M., Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 280, 5892–5901 (2005).PubMedCrossRefGoogle Scholar
  196. Yasojima, K., Schwab, C., McGeer, E. G., and McGeer, P. L., Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer’s disease. Brain Res., 887, 80–89 (2000).PubMedCrossRefGoogle Scholar
  197. Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S. M., Iwata, N., Saido, T. C., Maeda, J., Suhara, T., Trojanowski, J. Q., and Lee, V. M., Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron, 53, 337–351 (2007).PubMedCrossRefGoogle Scholar
  198. Yu, J. X., Bradt, B. M., and Cooper, N. R., Constitutive expression of proinflammatory complement components by subsets of neurons in the central nervous system. J. Neuroimmunol., 123, 91–101 (2002).PubMedCrossRefGoogle Scholar
  199. Zandi, P. P., Anthony, J. C., Hayden, K. M., Mehta, K., Mayer, L., and Breitner, J. C., Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County Study. Neurology, 59, 880–886 (2002).PubMedGoogle Scholar
  200. Zhou, Y., Su, Y., Li, B., Liu, F., Ryder, J. W., Wu, X., Gonzalez-Dewhitt, P. A., Gelfanova, V., Hale, J. E., May, P. C., Paul, S. M., and Ni, B., Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science, 302, 1215–1217 (2003).PubMedCrossRefGoogle Scholar
  201. Zhu, X., Su, B., Wang, X., Smith, M. A., and Perry, G., Causes of oxidative stress in Alzheimer disease. Cell. Mol. Life Sci., 64, 2202–2210 (2007).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Young-Jung Lee
    • 1
  • Sang Bae Han
    • 1
  • Sang-Yoon Nam
    • 2
  • Ki-Wan Oh
    • 1
  • Jin Tae Hong
    • 1
    • 3
    Email author
  1. 1.College of Pharamcy and Medical Research CenterChungbuk National UniversityCheongjuKorea
  2. 2.Research Institute of Veterinary MedicineChungbuk National UniversityCheongjuKorea
  3. 3.College of PharmacyChungbuk National UniversityCheongjuKorea

Personalised recommendations