Archives of Pharmacal Research

, Volume 33, Issue 9, pp 1451–1459 | Cite as

Support vector machine based classification of 3-dimensional protein physicochemical environments for automated function annotation

  • Hyeyoung Min
  • Seunghak Yu
  • Taehoon Lee
  • Sungroh YoonEmail author
Research Articles Drug Actions


The knowledge of protein functions as well as structures is critical for drug discovery and development. The FEATURE system developed at Stanford is an effective tool for characterizing and classifying local environments in proteins. FEATURE utilizes vectors of a fixed dimension to represent the physicochemical properties around a residue. Functional sites and non-sites are identified by classifying such vectors using the Naïve Bayes classifier. In this paper, we improve the FEATURE framework in several ways so that it can be more flexible, robust and accurate. The new tool can handle vectors of a user-specified dimension and can suppress noise effectively, with little loss of important signals, by employing dimensionality reduction. Furthermore, our approach utilizes the support vector machine for a more accurate classification. According to the results of our thorough experiments, the proposed new approach outperformed the original tool by 20.13% and 13.42% with respect to true and false positive rates, respectively.

Key words

Protein function 3-dimensional structure FEATURE Dimensionality reduction Normalization Support vector machine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ausiello, G., Via, A., and Helmer-Citterich, M., Query3d: a new method for high-throughput analysis of functional residues in protein structures. BMC Bioinformatics, 6(Suppl 4), S5–10 (2005).CrossRefPubMedGoogle Scholar
  2. Baker, J. and Thornton, J., An algorithm for constraintbased structural template matching: Application to 3D templates with statistical analysis. Bioinformatics, 19, 1644–1649 (2003).CrossRefGoogle Scholar
  3. Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. -D., and Zardecki, C., The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr., 58(Pt 6 No 1), 899–907 (2002).CrossRefPubMedGoogle Scholar
  4. Bishop, C. M., Pattern Recognition and Machine Learning, Springer, Heidelberg, (2007).Google Scholar
  5. Davis, J. and Goadrich, M., The relationship between precision-recall and ROC curves, In Proceedings of the 23rd international conference on Machine learning, ACM New York, pp. 233–240, (2006).Google Scholar
  6. De Maesschalck, R., Jouan-Rimbaud, D., and Massart, D. L., The Mahalanobis distance. Chemometr. Intell. Lab., 50, 1–18 (2000).CrossRefGoogle Scholar
  7. Di Gennaro, J., Siew, N., Hoffman, B., Zhang, L., Skolnick, J., Neilson, L., and Fetrow, J., Enhanced functional annotation of protein sequences via the use of structural descriptors. J. Struct. Biol., 134, 232–245 (2001).CrossRefPubMedGoogle Scholar
  8. Domingos, P. and Pazzani, M., Beyond independence: Conditions for the optimality of the simpleBayesian classifier. Machine Learning, 29, 103–130 (1997).CrossRefGoogle Scholar
  9. Frank, E., Trigg, L., Holmes, G., and Witten, I. H., Naive Bayes for regression. Mach. Learn., 41, 5–15 (2000).CrossRefGoogle Scholar
  10. Friedberg, I., Automated protein function prediction-the genomic challenge. Brief. Bioinformatics, 7, 225–242 (2006).CrossRefPubMedGoogle Scholar
  11. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-Genevaux, P. S., Pagni, M., and Sigrist, C. J., The PROSITE database. Nucleic Acids Res., 34(Database Issue), D227–D230 (2006).CrossRefPubMedGoogle Scholar
  12. Jambon, M., Imberty, A., Deleage, G., and Geourjon, C., A new bioinformatic approach to detect common 3D sites in protein structures. Proteins, 52, 137–145 (2003).CrossRefPubMedGoogle Scholar
  13. Landau, M., Mayrose, I., Rosenberg, Y., Glaser, F., Martz, E., Pupko, T., and Ben-Tal, N., ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res., 33(Web Server Issue), W299–W302 (2005).CrossRefPubMedGoogle Scholar
  14. Liang, M., Banatao, D. R., Klein, T. E., Brutlag, D. L., and Altman, R. B., WebFEATURE: an interactive web tool for identifying and visualizing functional sites on macromolecular structures. Nucleic Acids Res., 31, 3324–3327 (2003).CrossRefPubMedGoogle Scholar
  15. Redfern, O. C., Dessailly, B. H., Dallman, T. J., Sillitoe, I., and Orengo, C. A., FLORA: a novel method to predict protein function from structure in diverse superfamilies, PLoS Comput. Biol., 5, e1000485 (2009).CrossRefPubMedGoogle Scholar
  16. Rosner, B., Fundamentals of biostatistics, Fifth ed., Pacific Grove, California, Duxbury, (2000).Google Scholar
  17. Witten, I. H. and Frank, E., Data mining: practical machine learning tools andtechniques, 2nd ed., Morgan Kaufmann, California, (2005).Google Scholar
  18. Yoon, S., Ebert, J. C., Chung, E. Y., De Micheli, G., and Altman, R. B., Clustering protein environments for function prediction: finding PROSITE motifs in 3D. BMC Bioinformatics, 8(Suppl 4), S10 (2007).CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Hyeyoung Min
    • 1
  • Seunghak Yu
    • 2
  • Taehoon Lee
    • 2
  • Sungroh Yoon
    • 2
    Email author
  1. 1.College of PharmacyChung-Ang UniversitySeoulKorea
  2. 2.School of Electrical EngineeringKorea UniversitySeoulKorea

Personalised recommendations