Advertisement

Archives of Pharmacal Research

, Volume 33, Issue 9, pp 1317–1323 | Cite as

Scopoletin from the flower buds of Magnolia fargesii inhibits protein glycation, aldose reductase, and cataractogenesis Ex Vivo

  • Jun Lee
  • Nan Hee Kim
  • Joo Won Nam
  • Yun Mi Lee
  • Dae Sik Jang
  • Young Sook Kim
  • Sang Hae Nam
  • Eun-Kyoung Seo
  • Min Suk Yang
  • Jin Sook Kim
Research Articles Drug Discovery and Development

Abstract

Five compounds previously known structures, scopoletin (1), northalifoline (2), stigmast-4-en-3-one (3), tiliroside (4), and oplopanone (5) were obtained from the flower buds of Magnolia fargesii using chromatographic separation methods. The structures of 15 were identified by the interpretation of their spectroscopic data including 1D- and 2D-NMR as well as by comparison with reported values. Three compounds 13 were found from M. fargesii for the first time in this study. All the isolates (15) were subjected to in vitro bioassays to evaluate the inhibitory activity on advanced glycation end products formation and rat lens aldose reductase (RLAR). Compound 1 showed a remarkable inhibitory activity on advanced glycation end products formation with IC50 value of 2.93 μM (aminoguanidine: 961 μM), and showed a significant RLAR inhibitory activity with IC50 value of 22.5 μM (3.3-tetramethyleneglutaric acid: 28.7 μM). Compound 4 exhibited potent inhibitory activity against RLAR (IC50 = 14.9 μM). In the further experiment ex vivo, cataractogenesis of rat lenses induced with xylose was significantly inhibited by compound 1 treatment.

Key words

Magnolia fargesii Scopoletin Advanced glycation end products Rat lens aldose reductase Cataractogenesis Diabetic complications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ana, M. L. S., Artur, M. S. S., Armando, J. D. S., Jose, A. S. C., Fernando, M. J. D., and Carlos, P. N., Chemical composition of the light petroleum extract of Hibiscus cannabinus bark and core. Phytochem. Anal., 11, 345–350 (2000).CrossRefGoogle Scholar
  2. Argirov, O. K., Lin, B., Olsen, P., and Ortwerth, B. J., Isolation and characterization of a new advanced glycation endproduct of dehydroascorbic acid and lysine. Biochim. Biophys. Acta, 1620, 235–244 (2003).PubMedGoogle Scholar
  3. Beyer-Mears, A. and Cruz, E., Reversal of diabetic cataract by sorbinil, and aldose reductase inhibitor. Diabetes, 34, 15–21 (1985).CrossRefPubMedGoogle Scholar
  4. Chae, S. H., Kim, P. S., Cho, J. Y., Park, J. S., Lee, J. H., Yoo, E. S., Baik, K. U., Lee, J. S., and Park, M. H., Isolation and identification of inhibitory compounds on TNF-α production from Magnolia fargesii. Arch. Pharm. Res., 21,67–69 (1998).PubMedGoogle Scholar
  5. Chandra, D., Ramana, K. V., Friedrich, B., Srivastava, S., Bhatnagar, A., and Srivastava, S. K., Role of aldose reductase in TNF-α induced apoptosis of vascular endothelial cells. Chem. Biol. Intract., 143–144, 605–612 (2003).CrossRefGoogle Scholar
  6. Chen, C. C., Huang, Y. L., Chen, H. T., Chen, Y. P., and Hsu, H. Y., On the Ca++-antagonistic principles of the flower buds of Magnolia fargesii. Planta Med., 54, 438–440 (1988).CrossRefPubMedGoogle Scholar
  7. Cho, J. Y., Yoo, E. S., Baik, K. U., and Park, M. H., Eudesmin inhibit tumor necrosis factor-alpha production and T cell proliferation. Arch. Pharm. Res., 22, 348–353 (1999).CrossRefPubMedGoogle Scholar
  8. Chou, C.-J., Lin, L.-C., Chen, K.-T., and Chen, C.-F., North-alifoline, a new isoquinolone alkaloid from the pedicels of Lindera megaphylla. J. Nat. Prod., 57, 689–694 (1994).CrossRefGoogle Scholar
  9. Chung, Y.-S., Choi, Y.-H., Lee, S.-J., Choi, S., Lee, J.-H., Kim, H., and Hong, E.-K., Water extract of Aralia elata prevents cataractogenesis in vitro and in vivo. J. Ethnopharmacol., 101, 49–54 (2005).CrossRefPubMedGoogle Scholar
  10. Dufrane, S. P., Malaisse, W. J., and Sener, A., A micromethod for the assay of aldose reductase, its application to pancreatic islets. Biochem. Med., 32, 99–105 (1984).CrossRefPubMedGoogle Scholar
  11. Jernigan, H. M., Zigler, J. S., Liu, Y., Blum, P. S., Merola, L. O., and Stimbert, C. D., Effects of xylose on monkey lenses in organ culture: a model for study of sugar cataracts in a primate. Exp. Eye Res., 67, 61–71 (1998).CrossRefPubMedGoogle Scholar
  12. Jung, K. Y., Kim, D. S., Oh, S. R., Park, S. H., Lee, I. S., Lee, J. J., Shin, D. H., and Lee, H. K., Magnone A and B, novel anti-PAF tetrahydrofuran lignans from the flower buds of Magnolia fargesii. J. Nat. Prod., 61, 808–811 (1998).CrossRefPubMedGoogle Scholar
  13. Jung, M. and Park, M., Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules, 12, 2130–2139 (2007).CrossRefPubMedGoogle Scholar
  14. Kathryn, C. B. T., Wing-Sun, C., Victor, H. G., Christine, M., Richard, B., and Karen, S. L., Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care, 25, 1055–1059 (2002).CrossRefGoogle Scholar
  15. Lee, J., Lee, D., Jang, D. S., Nam, J.-W., Kim, J.-P., Park, K. H., Yang, M. S., and Seo, E.-K., Two new stereoisomers of tetrahydrofuranoid lignans from the flower buds of Magnolia fargesii. Chem. Pharm. Bull., 55, 137–139 (2007).CrossRefPubMedGoogle Scholar
  16. Lee, J., Seo, E.-K., Jang, D. S., Ha, T. J., Kim. J.-P., Nam, J.-W., Bae, G., Lee, Y. M., Yang, M. S., and Kim, J. S., Two new stereoisomers of neolignan and lignan from the flower buds of Magnolia fargesii. Chem. Pharm. Bull., 57, 298–301 (2009).CrossRefPubMedGoogle Scholar
  17. Li, S.-Y., Sigmon, V. K., Babcock, S. A., and Ren, J., Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci., 80, 1051–1056 (2007).CrossRefPubMedGoogle Scholar
  18. McRobert, E. A., Tikoo, A., Cooper, M. E., and Bach, L. A., Localization of the ezrin binding epitope for advanced glycation endproducts. Int. J. Biochem. Cell Biol., 40, 1570–1580 (2008).CrossRefPubMedGoogle Scholar
  19. Miyazawa, M., Kasahara, H., and Kameoka, H., Phenolic lignans from flower buds of Magnolia fargesii. Phytochemistry, 31, 3666–3668 (1992).CrossRefGoogle Scholar
  20. Muschietti, L., Gorzalczany, S., Ferraro, G., Acevedo, C., and Martino, V., Phenolic compounds with anti-inflammatory activity from Eupatorium buniifolium. Planta Med., 67, 743–744 (2001).CrossRefPubMedGoogle Scholar
  21. Pan, J. X., Hensens, O. D., Zink, D. L., Chang, M. N., and Hwang, S. B., Lignans with platelet activating factor antagonist activity from Magnolia biondii. Phytochemistry, 26, 1377–1379 (1987).CrossRefGoogle Scholar
  22. Prachayasittikul, S., Suphapong, S., Worachartcheewan, A., Lawung, R., Ruchirawat, S., and Prachayasittikul, V., Bioactive Metabolites from Spilanthes acmella Murr. Molecules, 14, 850–867 (2009).CrossRefPubMedGoogle Scholar
  23. Ramana, K. V., Chandra, D., Srivastava, S., Bhatnagar, A., Aggarwal, B. B., and Srivastava, S. K., Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells. J. Biol. Chem., 277, 32063–32070 (2002).CrossRefPubMedGoogle Scholar
  24. Ravichandran, R., Susan, J. V., Shirley, S. D. Y., Kevan, H., Shi, F. Y., and Ann, M. S., Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology, 15, 16R–28R (2005).CrossRefGoogle Scholar
  25. Rollinger, J. M., Hornick, A., Langer, T., Stuppner, H., and Prast, H., Acetylcholinesterase inhibitory activity of scopolin and scopoletin discoered by virtual screening of natural products. J. Med. Chem., 47, 6248–6254 (2004).CrossRefPubMedGoogle Scholar
  26. Shaw, C.-Y., Chen, C.-H., Hsu, C.-C., Chen, C.-C., and Tsai, Y.-C., Antioxidant properties of scopoletin isolated from Sinomonium acutum. Phytother. Res., 17, 823–825 (2003).CrossRefPubMedGoogle Scholar
  27. Srivastava, S. K., Ramana, K. V., and Bhatnagar, A., Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev., 26, 380–392 (2005).CrossRefPubMedGoogle Scholar
  28. Sturm, K., Levstik, L., Demopoulos, V. J., and Kristl, A., Permeability characteristics of novel aldose reductase inhibitors using rat jejunum in vitro. Eur. J. Pharm. Sci., 28, 128–133 (2006).CrossRefPubMedGoogle Scholar
  29. Su, W. C., Fang, J. M., and Cheng, Y. S., Sesquiterpenes from leaves of Cryptomeria japonica. Photochemistry, 39, 603–607 (1995).CrossRefGoogle Scholar
  30. Sugiyama, H., Yokokawa, F., Shioiri, T., Katagiri, N., Oda, O., and Ogawa, H., Efficient total synthesis of pentosidine, an advanced glycation endproduct. Tetrahedron Lett., 40, 2569–2572 (1999).CrossRefGoogle Scholar
  31. Sunanda, P. and Anand, K., Evaluation of the antithyroid, antioxidative and antihyperglycemic activity of scopoletin from Aegle marmelos leaves in hyperthyroid rats. Phytother. Res., 20, 1103–1105 (2006).CrossRefGoogle Scholar
  32. Vinson, J. A. and Howard, T. B., Inhibition of protein glycation and advanced glycation endproducts by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem., 7, 659–663 (1996).CrossRefGoogle Scholar
  33. Yamada, Y., Ishibashi, K., Ishibashi, K., Bhutto, I. A., Tian, J., Lutty, G. A., and Handa, J. T., the expression of advanced glycation endproduct receptors in rpe cells associated with basal deposits in human maculas. Exp. Eye Res., 82, 840–848 (2006).CrossRefPubMedGoogle Scholar
  34. Yang, J.-Y., Koo, J.-H., Yoon, H.-Y., Lee, J.-H., Park, B.-H., Kim, J.-S., Chi, M. S., and Park, J.-W., Effect of scopoletin on lipoprotein lipase activity in 2T3-L1 adipocytes. Int. J. Mol. Med., 20, 527–531 (2007).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Jun Lee
    • 1
  • Nan Hee Kim
    • 1
  • Joo Won Nam
    • 2
  • Yun Mi Lee
    • 1
  • Dae Sik Jang
    • 1
  • Young Sook Kim
    • 1
  • Sang Hae Nam
    • 3
  • Eun-Kyoung Seo
    • 2
  • Min Suk Yang
    • 4
  • Jin Sook Kim
    • 1
  1. 1.Diabetic Complications Research Center, Division of Traditional Korean Medicine Integrated ResearchKorea Institute of Oriental MedicineDaejeonKorea
  2. 2.College of Pharmacy and Center for Cell Signaling & Drug Discovery ResearchEwha Womans UniversitySeoulKorea
  3. 3.Department of Food ScienceJinju National UniversityJinjuKorea
  4. 4.Division of Applied Life ScienceGyeongsang National UniversityJinjuKorea

Personalised recommendations