Archives of Pharmacal Research

, Volume 33, Issue 7, pp 1049–1057 | Cite as

Pharmacological preconditioning by milrinone: Memory preserving and neuroprotective effect in ischemia-reperfusion injury in mice

  • Reetu Saklani
  • Amteshwar Jaggi
  • Nirmal SinghEmail author
Drug Actions


We tested the neuroprotective effect of milrinone, a phosphodiesterase III inhibitor, in pharmacological preconditioning. Bilateral carotid artery occlusion for 12 min followed by reperfusion for 24 h produced ischemia-reperfusion (I/R) cerebral injury in male Swiss albino mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using the Morris water maze test, and motor coordination was evaluated using the inclined beam walking test, rota-rod test, and lateral push test. Milrinone (50 μg/kg & 100 μg/kg i.v.) was administered 24 h before surgery in a separate group of animals to induce pharmacological preconditioning. I/R increased cerebral infarct size and impaired memory and motor coordination. Milrinone treatment significantly decreased cerebral infarct size and reversed I/R-induced impairments in memory and motor coordination. This neuroprotective effect was blocked by ruthenium red (3 mg/kg, s.c.), an intracellular ryanodine receptor blocker. These findings indicate that milrinone preconditioning exerts a marked neuroprotective effect on the ischemic brain, putatively due to increased intracellular calcium levels activating calcium-sensitive signal transduction cascades.

Key words

Milrinone Phosphodiesterase Pharmacological preconditioning Cerebral ischemia Ruthenium red Memory Morris water maze 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baim, D. S., McDowell, A. V., Cherniles, J., Monrad, E. S., Parker, J. A., Edelson J., Braunwald, E., and Grossman, W., Evaluation of a new bipyridine inotropic agentmilrinone in patients with severe congestive heart failure. N. Engl. J. Med., 309, 748–756 (1983).PubMedGoogle Scholar
  2. Bederson, J. B., Pitts, L. H., Tsuji, M., Nishimur, M. C., Davis, R. L., and Bartowski, H., Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 17, 472–476 (1986).PubMedGoogle Scholar
  3. Bochelen, D., Rudin, M., and Sauter, A., Calcineurin inhibitors FK506 and SDZ ASM 981 alleviate the outcome of focal cerebral ischemic/reperfusion injury. J. Pharmacol. Exp. Ther., 288, 653–659 (1999).PubMedGoogle Scholar
  4. Budde, T., Munsch, T., and Pape, H. C., Distribution of Ltype calcium channels in rat thalamic neurons. Eur. J. Neurosci., 10, 586–597 (1998).CrossRefPubMedGoogle Scholar
  5. Carafoli, E., Santalla, L., Branca, D., and Brini, M., Generation, control and processing of cellular calcium signals. Crit. Rev. Biochem. Mol. Biol., 36, 107–260 (2001).CrossRefPubMedGoogle Scholar
  6. Conti, M., Phosphodiesterases and cyclic nucleotide signalling in endocrine cells. Mol. Endocrinol., 14, 1317–1327 (2000).CrossRefPubMedGoogle Scholar
  7. Davis, D. P. and Patel, P. M., Ischemic preconditioning in the brain. Curr. Opin. Anaesthesiol., 16, 447–452 (2003).CrossRefPubMedGoogle Scholar
  8. Dobkin, B. H., The rehabilitation of elderly stroke patients. Clin. Geriatr. Med., 7, 507–523 (1991).PubMedGoogle Scholar
  9. Dunham, N. W. and Miya, T. S., A note on a simple apparatus for detecting neurological deficit in rats and mice. J. Am. Pharm. Assoc. Am. Pharm. Assoc. (Baltim), 46, 208–209 (1957).Google Scholar
  10. Edwards, R. J., Saurin, A. T., Rakhit, R. D., and Marber, M. S., Therapeutic potential of ischaemic preconditioning. Br. J. Clin. Pharmacol., 50, 87–97 (2000).CrossRefPubMedGoogle Scholar
  11. Evans, D. B., Overview of cardiovascular physiologic and pharmacologic aspects of selective phosphodiesterase peak III inhibitors. Am. J. Cardiol., 63, 9A–11A (1989).CrossRefPubMedGoogle Scholar
  12. Fabiato, A., Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinjee cell. J. Gen. Physiol., 85, 247–289 (1985).CrossRefPubMedGoogle Scholar
  13. Feeney, D. M., Boyeson, M. G., Linn, R. T., Murray, H. M., and Dail, W. G., Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res., 211, 67–77 (1981).CrossRefPubMedGoogle Scholar
  14. Finkbeiner, S. and Greenberg, M. E., Calcium channel regulated neuronal gene expression. J. Neurobiol., 37, 171–189 (1998).CrossRefPubMedGoogle Scholar
  15. Fraticelli, A. T., Cholley, B. P., Losser, M. R., and Payen, D., Milrinone for the treatment of cerebral vasospasm after aneursymal subarachnoid hemorrhage. Stroke, 39, 893–898 (2008).CrossRefPubMedGoogle Scholar
  16. Friedman, L. K., Calcium: A role for neuroprotection and sustained adaptation. Mol. Interv., 6, 315–329 (2006).CrossRefPubMedGoogle Scholar
  17. Gluckman, P. D., Wyatt, J. S., Azzopardi, D., Ballard, R., Edwards, A. D., Ferriero, D. M., Polin, R. A., Robertson, C. M., Thoresen, M., Whitelaw, A., and Gunn, A. J., Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet, 365, 663–670 (2005).PubMedGoogle Scholar
  18. Iwasaki, K., Egashira, N., Takagaki, Y., Yoshimitsu, Y., Hatip-Al-Khatib, I., Mishima, K., and Fujiwara, M., Nilvadipine prevents the impairment of spatial memory induced by cerebral ischemia combined with beta-amyloid in rats. Biol. Pharm. Bull., 30, 698–701 (2007).CrossRefPubMedGoogle Scholar
  19. Jenkins, L. W., Povlishock, J. T., Lewelt, W., Miller, J. D., and Becker, D. P., The role of postischemic recirculation in the development of ischemic neuronal injury following complete cerebral ischemia. Acta Neuropathol., 55, 205–220 (1981).CrossRefPubMedGoogle Scholar
  20. Kaur, S., Jaggi, A. S., and Singh, N., Molecular aspects of ischemic postconditioning. Fundam. Clin. Pharmacol., 23, 521–536 (2009a).CrossRefPubMedGoogle Scholar
  21. Kaur, S., Rehni, A. K., Singh, N., and Jaggi, A. S., Studies on cerebral protection of digoxin against ischemia/reperfusion Injury in Mice. Yakugaku Zasshi, 129, 435–443 (2009b).CrossRefPubMedGoogle Scholar
  22. Kitagawa, K., Matsumoto, M., Tagaya, M., Hata, R., Ueda, H., Niinobe, M., Handa, N., Fukunaga, R., Kimura, K., and Mikoshiba, K., ’Ischemic tolerance’ phenomenon found in the brain. Brain Res., 528, 21–24 (1990).CrossRefPubMedGoogle Scholar
  23. Kobayashi, T., Sugawara, Y., Ohkubo, T., Imamura, H., and Makuuchi, M., Effects of amrinone on hepatic ischemiareperfusion injury in rats. J. Hepatol., 37, 31–38 (2002).CrossRefPubMedGoogle Scholar
  24. Kucuk, C., Akcan, A., Akyyldyz, H., Akgun, H., Muhtaroglu, S., and Sozuer, E., Effects of amrinone in an experimental model of hepatic ischemia-reperfusion injury. J. Surg. Res., 151, 74–79 (2009).CrossRefPubMedGoogle Scholar
  25. Kume, M., Banafsche, R., Yamamoto, Y., Yamaoka, Y., Nobling, R., Gebhard, M. M., and Klar, E., Dynamic changes of post-ischemic hepatic microcirculation improved by a pretreatment of phosphodiesterase III inhibitor, milrinone. J. Surg. Res., 136, 209–218 (2006).CrossRefPubMedGoogle Scholar
  26. Lang, S. C., Elsasser, A., Scheler, C., Vetter, S., Tiefenbacher, C. P., Kubler, W., Katus, H. A., and Vogt, A. M., Myocardial preconditioning and remote renal preconditioning—identifying a protective factor using proteomic methods? Basic Res. Cardiol., 101, 149–158 (2006).CrossRefPubMedGoogle Scholar
  27. Lee, J. H., Lee, Y. K., Ishikawa, M., Koga, K., Fukunaga, M., Miyakoda, G., Mori, T., Hosokawa, T., and Hong, K. W., Cilostazol reduces brain lesion induced by focal cerebral ischemia in rats-an MRI study. Brain Res., 994, 91–98 (2003).CrossRefPubMedGoogle Scholar
  28. Lugnier, C., Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents. Pharmacol. Ther., 109, 366–398 (2006).CrossRefPubMedGoogle Scholar
  29. Lukyanenko, V., Gyorke, I., Subramanian, S., Smirnov, A., Weisner, T. F., and Gyorke, S., Inhibition of Ca2+ sparks by Ruthenium red in permeabilized rat ventricular myocytes. Biophys. J., 79, 1273–1284 (2000).CrossRefPubMedGoogle Scholar
  30. McCormick, P. H., Chen, G., Tlerney, S., Kelly, C. J., and Bouchier-Hayes, D. J., Clinically relevant thermal preconditioning attenuates ischemia-reperfusion injury. J. Surg. Res., 109, 24–30 (2003).CrossRefPubMedGoogle Scholar
  31. Mcgarry, S. J. and Williams, A. J., Digoxin activates sarcoplasmic reticulum calcium release channels: possible role in cardiac inotropy. Br. J. Pharmacol., 108, 1043–1050 (1993).PubMedGoogle Scholar
  32. Miyawaki, H. and Ashraf, M., Calcium as a mediator of ischemic preconditioning. Circ. Res., 80, 790–799 (1997).PubMedGoogle Scholar
  33. Miyawaki, H., Zhou, X., and Ashraf, M., Calcium preconditioning elicits strong protection against ischemic injury via protein kinase C signaling pathway. Circ. Res., 79, 137–146 (1996).PubMedGoogle Scholar
  34. Morris, R., Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods, 11, 47–60 (1984).CrossRefPubMedGoogle Scholar
  35. Murray, C. E., Jennings, R. B., and Reimer, K. A., Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 74, 1124–1136 (1986).Google Scholar
  36. Neumar, R. W., Molecular mechanisms of ischemic neuronal injury. Ann. Emerg. Med., 36, 483–506 (2000).PubMedGoogle Scholar
  37. Parle, M. and Singh, N., Animal models for testing memory. Asia Pacific. J. Pharmacol., 16, 101–120 (2004).Google Scholar
  38. Pateliya, B. B., Singh, N., and Jaggi, A. S., Possible role of opioids and KATP channels in neuroprotective effect of postconditioning in mice. Biol. Pharm. Bull., 31, 1755–1760 (2008).CrossRefPubMedGoogle Scholar
  39. Peralta, C., Serafin, A., Fernandez-Zabalegui, L., Wu, Z. Y., and Rosello-Catafau, J., Liver ischemic preconditioning: a new strategy for the prevention of ischemia-reperfusion injury. Transplant. Proc., 35, 1800–1802 (2003).CrossRefPubMedGoogle Scholar
  40. Rehni, A. K. and Singh, N., Role of phosphoinositide 3- kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacol. Rep., 59, 197–198 (2007).Google Scholar
  41. Rehni, A. K., Singh, N., and Singh, A. S., Possible role of insulin, endogenous opioids and calcitonin gene related peptide in remote ischemic preconditioning of brain. Yakugaku Zasshi, 127, 1013–1020 (2007).CrossRefPubMedGoogle Scholar
  42. Rehni, A. K., Bhateja, P., Singh, N., and Jaggi, A.S., Implication of mast cell degranulation in ischemic precondition ing induced prevention of cerebral injury. Fundam. Clin. Pharmacol., 22, 179–188 (2008a).CrossRefPubMedGoogle Scholar
  43. Rehni, A. K., Singh, T. G., Singh, N., and Jaggi, A. S., Pharmacological preconditioning of the brain: a possible interplay between opioid and calcitonin gene related peptide transduction systems. Pharmacol. Rep., 60, 904–913 (2008b).PubMedGoogle Scholar
  44. Rump, A. F., Acar, D., and Klaus, W., A quantitative comparison of functional and anti-ischemic effects of the phosphodiesterase-inhibitors, amrinone, milrinone and levosimendan in rabbit isolated hearts. Br. J. Pharmacol., 112, 757–762 (1994).PubMedGoogle Scholar
  45. Saltman, A. E., Gaudette, G. R., Levitsky, S., and Krukenkamp, I. B., Amrinone preconditioning in the isolated perfused rabbit heart. Ann. Thorac. Surg., 70, 609–613 (2000).CrossRefPubMedGoogle Scholar
  46. Schulz, R., Post, H., Vahlhaus, C., and Heusch, G., Ischemic preconditioning in pigs: a graded phenomenon; its relation to adenosine and bradykinin. Circulation, 98, 1022–1029 (1998).PubMedGoogle Scholar
  47. Schulz, R., Gres, P., and Heusch, G., Role of endogenous opioids in ischemic preconditioning but not in short-term hibernation in pigs. Am. J. Physiol. Heart Circ. Physiol., 280, H2175–H2181 (2001).PubMedGoogle Scholar
  48. Setoyama, K., Kamimura, R., Fujiki, M., Misumi, K., Miyahara, K., and Sakamoto, H., Effects of olprinone on myocardial ischemia reperfusion injury in dogs. J. Vet. Med. Sci., 68, 865–868 (2006).CrossRefPubMedGoogle Scholar
  49. Somers, S., Lacerda, L., Suleman, N., Opie, L., and Lecour, S., Critical role of age, strain and number of cycles in ischemic postconditioniong. J. Mol. Cell. Cardiol., 42, S186–S187 (2007).CrossRefGoogle Scholar
  50. Ueda, T., Mizushige, K., Yukiiri, K., Takahashi, T., and Kondoh, M., Improvement of cerebral blood flow by olprinone, a phosphodiesterase-3 inhibitor, in mild heart failure. Cerebrovasc. Dis., 16, 396–401 (2003).CrossRefPubMedGoogle Scholar
  51. Wang, S. Q., Song, L. S., Lakatta, E. G., and Cheng, H., Ca2+ signaling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature, 410, 592–596 (2001).CrossRefPubMedGoogle Scholar
  52. Warner, D. S., McFarlane, C., Todd, M. M., Ludwig, P., and McAllister, A. M., Sevoflurane and halothane reduce focal ischemic brain damage in the rat: Possible influence on thermoregulation. Anesthesiology, 79, 985–992 (1993).CrossRefPubMedGoogle Scholar
  53. Yang, X. M., Proctor, J. B., Cui, L., Krieg, T., Downey, J. M., and Cohen, M. V., Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J. Am. Coll. Cardiol., 44, 1103–1110 (2004).CrossRefPubMedGoogle Scholar
  54. Yanpallewar, S. U., Hota, D., Rai, S., Kumar, M., and Acharya, S. B., Nimodipine attenuates biochemical, behavioral and histopathological alterations induced by acute transient and long-term bilateral common carotid occlusion in rats. Pharmacol. Res., 49, 143–150 (2004).CrossRefPubMedGoogle Scholar
  55. Yellon, D. M. and Dana, A., The preconditioning phenomenon: a tool for the scientist or a clinical reality? Circ. Res., 87, 543–550 (2000).PubMedGoogle Scholar
  56. Ye, Y. L., Shi, W. Z., Zhang, W. P., Wang, M. L., Zhou, Y., Fang, S. H., Liu, L. Y., Zhang, Q., Yu, Y. P., and Wei, E. Q., Cilostazol, a phosphodiesterase 3 inhibitor, protects mice against acute and late ischemic brain injuries. Eur. J. Pharmacol., 557, 23–31 (2007).CrossRefPubMedGoogle Scholar
  57. Zhai, P., Eurell, T. E., Cotthaus, R., Jeffery, E. H., Bahr, J. M., and Gross, D. R., Effect of estrogen on global myocardial ischemia-reperfusion injury in female rats. Am. J. Physiol. Heart Circ. Physiol., 279, H2766–H2775 (2000).PubMedGoogle Scholar
  58. Zhao, P., Peng, L., Li, L., Xu, X., and Zuo, Z., Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats. Anesthesiology, 107, 963–970 (2007).CrossRefPubMedGoogle Scholar
  59. Zheng, S. and Zuo, Z., Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol. Pharmacol., 65, 1172–1180 (2004).CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences and Drug ResearchPunjabi UniversityPatialaIndia
  2. 2.Department of Pharmaceutical Sciences and Drug ResearchPunjabi UniversityPatialaIndia

Personalised recommendations