Archives of Pharmacal Research

, Volume 33, Issue 6, pp 875–880

Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro

  • Dae Sik Jang
  • Yun Mi Lee
  • Il Ha Jeong
  • Jin Sook Kim
Research Articles Drug Discovery and Development

Abstract

In an ongoing project directed toward the discovery of novel treatments for diabetic complications from traditional herbal medicines, fifteen compounds, apigenin (1), apigenin-7-O-β-d-glucopyranoside (2), apigenin-7-O-(6″-O-acetyl)-β-d-glucopyranoside (3), luteolin (4), luteolin-7-O-β-d-glucopyranoside (5), luteolin-7-O-(6″-O-acetyl)-β-d-glucopyranoside (6), isorhamnetin-3-Oneohesperidoside (7), 4-O-caffeoylquinic acid (8), chlorogenic acid methyl ester (9), 4-O-β-d-glucopyranosylcaffeic acid (10), lobetyolin (11), cordifolioidyne C (12), isomultiflorenyl acetate (13), β-sitosterol glucoside (14), and α-spinosterol (15), were isolated from an EtOAc-soluble fraction of the flowers of Platycodon grandiflorum (balloonflower; Campanulaceae). The structures of the compounds were identified by physical and spectroscopic methods, as well as by comparison of their data with literature values. All the isolates were evaluated in vitro for inhibitory activity on the formation of advanced glycation end products and rat lens aldose reductase.

Key words

Platycodon grandiflorum Campanulaceae Advanced glycation end products (AGEs) Rat lens aldose reductase (RLAR) Diabetic complications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, N., Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract., 67, 3–21 (2005).CrossRefPubMedGoogle Scholar
  2. Bae, K., The Medicinal Plants of Korea. Kyo-Hak Publishing Co., Seoul, pp. 485, (2002).Google Scholar
  3. Beyer-Mears, A. and Cruz, E., Reversal of diabetic cataract by sorbinil, an aldose reductase inhibitor. Diabetes, 34, 15–21 (1985).CrossRefPubMedGoogle Scholar
  4. Brownlee M., The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54, 1615–1625 (2005).CrossRefPubMedGoogle Scholar
  5. Chaurasia, N. and Wichtl, M., Flavonol glycosides from Urtica dioica. Planta Med., 53, 432–434 (1987).CrossRefPubMedGoogle Scholar
  6. Choi, S. Z., Lee, S. O., Choi, S. U., and Lee, K. R., A new sesquiterpene hydroperoxide from the aerial parts of Aster oharai. Arch. Pharm. Res., 26, 521–525 (2003).CrossRefPubMedGoogle Scholar
  7. Cui, C. -B., Tezuka, Y., Kikuchi, T., Nakano, H., Tamaoki, T., and Park, J. -H., Constituent of a fern, Davallia mariesii Moore. I. Isolation and structures of davallialactone and a new glucuronide. Chem. Pharm. Bull., 38, 3218–3225 (1990).PubMedGoogle Scholar
  8. Cui, C. -B., Jeong, S. K., Lee, Y. S., Lee, S. O., Kang, I. -J., and Lim, S. S., Inhibitory activity of caffeoylquinic acids from the aerial parts of Artemisia princeps on rat lens aldose reductas and on the formation of advanced glycation end products. J. Korean Soc. Appl. Biol. Chem., 52, 655–662 (2009).CrossRefGoogle Scholar
  9. Dufrane, S. P., Malaisse, W. J., and Sener, A., A micromethod for the assay of aldose reductase, its application to pancreatic islets. Biochem. Med., 32, 99–105 (1984).CrossRefPubMedGoogle Scholar
  10. Engerman, R. L. and Kern, T. S., Experimental galactosemia produces diabetes-like retinopathy. Diabetes, 33, 97–100 (1984).CrossRefPubMedGoogle Scholar
  11. Faure, R. and Gaydou, E. M., Application of inverse-detected two-dimensional heteronuclear-correlated NMR spectroscopy to the complete carbon-13 assignment of isomultiflorenyl acetate. J. Nat. Prod., 54, 1564–1569 (1991).CrossRefGoogle Scholar
  12. Han, X. H., Hong, S. S., Hwang, J. S., Lee, M. K., Hwang, B. Y., and Ro, J. S., Monoamine oxidase inhibitory components from Cayratia japonica. Arch. Pharm. Res., 30, 13–17 (2007).CrossRefPubMedGoogle Scholar
  13. Ishimaru, K., Yonemitsu, H., and Shimomura, K., Lobetyolin and lobetyol from hairy root culture of Lobelia inflata. Phytochemistry, 30, 2255–2257 (1991).CrossRefGoogle Scholar
  14. Jang, D. S., Lee, G. Y., Kim, Y. S., Lee, Y. M., Kim, C. S., Yoo, J. L., and Kim, J. S., Anthraquinones from the seeds of Cassia tora with inhibitory activity on protein glycation and aldose reductase. Biol. Pharm. Bull., 30, 2207–2210 (2007).CrossRefPubMedGoogle Scholar
  15. Jang, D. S., Yoo, N. H., Lee, Y. M., Yoo, J. L., Kim, Y. S., and Kim, J. S., Constituents of the flowers of Erigeron annuus with inhibitory activity on the formation of advanced glycation end products (AGEs) and aldose reductase. Arch. Pharm. Res., 31, 900–904 (2008).CrossRefPubMedGoogle Scholar
  16. Jung, H. A., Park, J. C., Chung, H. Y., Kim, J., and Choi, J. S., Antioxidant flavonoids and chlorogenic acid from the leaves of Eriobotrya japonica. Arch. Pharm. Res., 22, 213–218 (1999).CrossRefPubMedGoogle Scholar
  17. Kim, Y. S., Kim, N. H., Lee, S. W., Lee, Y. M., Jang, D. S., and Kim, J. S., Effect of protocatechualdehyde on receptor for advanced glycation end products and TGF-β1 expression in human lens epithelial cells cultured under diabetic conditions and on lens opacity in streptozotocindiabetic rats. Eur. J. Pharmacol., 569, 171–179 (2007).CrossRefPubMedGoogle Scholar
  18. Lee, J. Y., Chang, E. J., Kim, H. J., Park, J. H., and Choi, S. W., Antioxidant flavonoids from leaves of Carthamus tinctorius. Arch. Pharm. Res., 25, 313–319 (2002).CrossRefPubMedGoogle Scholar
  19. Lee, S., Kim, K. S., Jang, J. M., Park, Y., Kim, Y. B., and Kim, B. -K., Phytochemical constituents from the herba of Artemisia apiacea. Arch. Pharm. Res., 25, 285–288 (2002).CrossRefPubMedGoogle Scholar
  20. Lee, Y. H., Lee, I. R., Won, W. S., and Park, C. H., Flavonoids of Elscholtzia cristata. Arch. Pharm. Res., 11, 247–249 (1988).CrossRefGoogle Scholar
  21. Logendra, S., Ribnicky, D. M., Yang, H., Poulev, A., Ma, J., Kennelly, E. J., and Raskin, I., Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. Phytochemistry, 67, 1539–1546 (2006).CrossRefPubMedGoogle Scholar
  22. Matsuda, H., Morikawa, T., Toguchida, I., and Yoshikawa, M., Structural requirements of flavonoids and related compounds for aldos reductase inhibitory activity. Chem. Pharm. Bull., 50, 788–795 (2002).CrossRefPubMedGoogle Scholar
  23. Matsuda, H., Wang, T., Managi, H., and Yoshikawa, M., Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg. Med. Chem., 11, 5317–5323 (2003).CrossRefPubMedGoogle Scholar
  24. Mei, R. -Q., Lu, Q., Hu, Y. -F., Liu, H. -Y., Bao, F. -K., Zhang, Y., and Cheng, Y. -X., Three new polyyne (= polyacetylene) glucosides from the edible roots of Codonopsis cordifolioidea. Helv. Chim. Acta, 91, 90–96 (2008).CrossRefGoogle Scholar
  25. Peyroux, J. and Sternberg, M., Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes, Pathol. Biol., 54, 405–419 (2006).CrossRefPubMedGoogle Scholar
  26. Reddy, V. P. and Beyaz, A., Inhibitors of the Maillard reaction and AGE breakers as therapeutic s for multiple diseases. Drug Discov. Today, 11, 646–654 (2006).CrossRefPubMedGoogle Scholar
  27. Švehlíková, V., Bennet, R. N., Mellon, F. A., Needs, P. W., Piacente, S., Kroon, P. A., Bao, Y., Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry, 65, 2323–2332 (2004).CrossRefPubMedGoogle Scholar
  28. Takeuchi, M. and Yamagishi, S., Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des., 14, 973–978 (2008).CrossRefPubMedGoogle Scholar
  29. Tatefuji, T., Izumi, N., Ohta, T., Arai, S., Ikeda, M., and Kurimoto, M., Isolation and identification of compounds from Brazilian propolis which enhance macrophage spreading and mobility. Biol. Pharm. Bull., 19, 966–970 (1996).PubMedGoogle Scholar
  30. Tomlinson, D. R., Stevens, E. J., and Diemel, L. T., Aldose reductase inhibitors and their potential for the treatment of diabetes complications. Trends Pharmacol. Sci., 15, 292–298 (1994).CrossRefGoogle Scholar
  31. Yabe-Nishimura, C., Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol. Rev., 50, 21–33 (1998).PubMedGoogle Scholar
  32. Yoo, N. H., Jang, D. S., Yoo, J. L., Lee, Y. M., Kim, Y. S., Cho, J. H., and Kim, J. S., Erigeroflavanone, a flavanone derivative from the flowers of Erigeron annuus with protein glycation and aldose reductase inhibitory activity. J. Nat. Prod., 71, 713–715 (2008).CrossRefPubMedGoogle Scholar
  33. Yoshikawa, M., Morikawa, T., Murakami, T., Toguchida, I., Harima, S., and Matsuda, H., Medicinal flowers. I. Aldose reductase inhibitors and three new eudesmane-type sesquiterpenes, kikkanols A, B, and C, from the flowers of Chrysanthemum indicum L. Chem. Pharm. Bull., 47, 340–345 (1999).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Dae Sik Jang
    • 1
  • Yun Mi Lee
    • 1
  • Il Ha Jeong
    • 1
  • Jin Sook Kim
    • 1
  1. 1.Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated ResearchKorea Institute of Oriental Medicine (KIOM)DaejeonKorea

Personalised recommendations