Archives of Pharmacal Research

, Volume 33, Issue 4, pp 637–643 | Cite as

Protective effects of propolis and thymoquinone on development of atherosclerosis in cholesterol-fed rabbits

  • Manar A. Nader
  • Dina S. El-Agamy
  • Ghada M. Suddek
Research Articles Drug Actions


Hypercholesterolemia, cholesterol-enriched diet and oxidative stress have been shown to increase serum total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) levels resulting in development of atherosclerosis. Antioxidants play an important role in inhibiting and scavenging free radicals, thus providing protection to humans against infectious and degenerative diseases. The present study was undertaken to examine the possible protective effects of propolis (a resinous hive product collected by honeybees from various plant sources) and thymoquinone (TQ, active constituent of Nigella. Sativa seeds oil) on serum lipid levels and early atherosclerotic lesions in hypercholestrolemic rabbits. New Zealand rabbits were fed on either standard chow or atherogenic diet during four weeks and concomitantly received either propolis or TQ. At the end of experiment period, serum samples were collected to determine lipid profile, kidney functions and antioxidant status. Tissues from aorta, pulmonary artery and kidney were taken for histopathological examination. The cholesterol-enriched diet induced a significant increase in serum TC, triglycerides, LDL-C, thiobarbituric acid-reactive substances concentrations and a significant decrease in high density lipoprotein-cholesterol and in reduced glutathione levels compared to control group. Administration of propolis or TQ with cholesterol-enriched diet significantly (p < 0.05) reduced TC, LDL-C, triglycerides and thiobarbituric acid-reactive substances concentrations, while increased high density lipoprotein-cholesterol concentration, as well as glutathione content compared to high cholesterol (HC) control group. Kidney function parameters were significantly affected by cholesterol diet and both propolis and TQ counterregulated the cholesterol-induced changes. Histopathologically, early athersclerotic changes were observed in HC control group represented by endothelial damage and thickened foam cells while propolis or TQ provided protection against the HC-induced damage. In conclusion, the present study suggests the potential beneficial effects of both propolis and TQ in diminishing the risk of atherosclerosis via antioxidant mechanism.

Key words

Propolis Thymoquinone Atherosclerosis Cholesterol Oxidative stress Rabbits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aikawa, M. and Libby, P., The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc. Pathol., 13, 125–138 (2004).CrossRefPubMedGoogle Scholar
  2. Ali, B. H. and Blunden, G., Pharmacological and Toxicological Properties of Nigella sativa. Phytother. Res., 17, 299–305 (2003).CrossRefPubMedGoogle Scholar
  3. Allain, C. C., Poon, L. S., Chan, C. S. G., Richmond, W., and Fu, P. C., Enzymatic determination of total serum cholesterol. Clin. Chem., 20, 470–475 (1974).PubMedGoogle Scholar
  4. Aydin, S., Uzun, H., Sozer, V., and Altug T., Effects of atorvastatin therapy on protein oxidation and oxidative DNA damage in hypercholesterolemic rabbits. Pharmacol. Res., 59, 242–247 (2009).CrossRefPubMedGoogle Scholar
  5. Badary, O. A., Taha, R. A., Gamal el-Din, A. M., and Abdel-Wahab, M. H., Thymoquinone is a potent superoxide anion scavenger. Drug Chem. Toxicol., 26, 87–98 (2003).CrossRefPubMedGoogle Scholar
  6. Bankova, V. S., Boudourova-Krasteva, G., Sforcin, J. M., Fretea, X., Kujumgievc, A., Maimoni-Rodellab, R., and Popova, S., Phytochemical evidence for the plant origin of Brazilian propolis from São Paulo State. Z. Naturforsch., 54c, 401–405 (1999).Google Scholar
  7. Beutler, E., Duron, O., and Kelly, B. M., Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 61, 882–888 (1963).PubMedGoogle Scholar
  8. Bhadaura, M., Nirala, S. K., and Shukla, S., Durationdependent hepatoprotective effects of propolis extract against carbon tetrachloride-induced acute liver damage in rats. Adv. Ther., 24, 1136–1145 (2007).CrossRefGoogle Scholar
  9. Blokhina, O. B., Virolainnen, E., Fagerstedt, K. V., Hoikkala, A., Wahala, K., and Chirkova, T. V., Antioxidant status of anoxia-tolerant and intolerant plant species under anoxia and reaeration. Physiol. Plant., 109, 396–403 (2000).CrossRefGoogle Scholar
  10. Büyükberber, M., Sava, M. C., Ba∂ci, C., Koruk, M., Gülen, M. T., Tutar, E., Bilgiç, T., Deveci, R., and Küçük, C., The beneficial effect of propolis on cerulein-induced experimental acute pancreatitis in rats. Turk. J. Gastroenterol., 20, 122–128 (2009).PubMedGoogle Scholar
  11. Chenni, A., Yahia, D. A., Boukortt, F. O., Prost, J., Lacaille-Dubois, M. A., and Bouchenak, M., Effect of aqueous extract of Ajuga iva supplementation on plasma lipid profile and tissue antioxidant status in rats fed a high-cholesterol diet. J. Ethnopharmacol., 109, 207–213 (2007).CrossRefPubMedGoogle Scholar
  12. Fawcett, J. K. and Scott, J. E., Determination of urea by urease method using Berthelot reaction. J. Clin. Pathol., 13, 156 (1960).CrossRefPubMedGoogle Scholar
  13. Finley, P. R., Schifman, R. B., Williams, R. J., and Lichti, D. A., Cholesterol in high-density lipoprotein: use of Mg+2/dextran sulfate in its enzymatic measurement. Clin. Chem., 24, 931–933 (1978).PubMedGoogle Scholar
  14. Fouda, A. M., Daba, M. H., Dahab, G. M., and Sharaf El-Din, O. A., Thymoquinone ameliorates renal oxidative damage and proliferative response induced by mercuric chloride in rats. Basic Clin. Pharmacol. Toxicol., 103, 109–118 (2008).CrossRefPubMedGoogle Scholar
  15. Fredrickson, D. S., Levy, R. I., and Less, R. S., Fat transport in lipoproteins: an integrated approach to mechanisms and disorders. N. Engl. J. Med., 276, 34–42 (1967).PubMedCrossRefGoogle Scholar
  16. Friedewald, W. T., Levy, R. I., and Fredrickson, D. S., Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifugation. Clin. Chem., 18, 499–500 (1972).PubMedGoogle Scholar
  17. Fuliang, H. U., Hepburn, H. R., Xuan, H., Chen, M., Daya, S., and Radloff S. E., Effects of propolis on blood glucose, blood lipid and free radicalsin rats with diabetes mellitus. Pharmacol. Res., 51, 147–152 (2005).CrossRefPubMedGoogle Scholar
  18. Henry, R. J., Cannon, D. C., and Winkelman, J. W., Clinical chemistry, Principles and Techniques, 2nd ed, Lange Medical Publication, Prentice Hall, London, pp. 252, (1974).Google Scholar
  19. Hosseinzadeh, H., Parvardeh, S., Asl, M. N., Sadeghnia, H. R., and Ziaee, T., Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine, 14, 621–627 (2007).CrossRefPubMedGoogle Scholar
  20. Khalife, K. H. and Lupidi, G., Reduction of hypervalent states of myoglobin and hemoglobin to their ferrous forms by thymoquinone: The role of GSH, NADH and NADPH. Biochim. Biophys. Acta, 1780, 627–637 (2008).PubMedGoogle Scholar
  21. Khalil, M. L., Biological activity of bee propolis in health and disease. Asian Pac. J. Cancer Prev., 7, 22–31 (2006).PubMedGoogle Scholar
  22. King, J. L., Miller, R. J., Blue, J. P. Jr, O’Brien, W. D. Jr, and Erdman, J. W. Jr., Inadequate dietary magnesium intake increases atherosclerotic plaque development in rabbits. Nutr. Res., 29, 343–349 (2009).CrossRefPubMedGoogle Scholar
  23. Lecumberri, E., Goya, L., Mateos, R., Alía, M., Ramos, S., Izquierdo-Pulido, M., and Bravo, L., A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition, 23, 332–341 (2007).CrossRefPubMedGoogle Scholar
  24. Montilla, P., Espejo, I., Muñoz, M. C., Bujalance, I., Muñoz-Castañeda, J. R., and Tunez, I., Protective effect of red wine on oxidative stress and antioxidant enzyme activities in the brain and kidney induced by feeding high cholesterol in rats. Clin. Nutr., 25, 146–153 (2006).CrossRefPubMedGoogle Scholar
  25. Newairy, A. S., Salama, A. F., Hussien, H. M., and Yousef, M. I., Propolis alleviates aluminium-induced lipid peroxidation and biochemical parameters in male rats. Food Chem. Toxicol., 47, 1093–1098 (2009).CrossRefPubMedGoogle Scholar
  26. Nieva Moreno, M. I., Isla, M. I., Sampietro, A. R., and Vattuone, M. A., Comparison of the free radical — scavenging activity of propolis from several regions of Argentine. J. Ethnopharmacol., 71, 109–114 (2000).CrossRefGoogle Scholar
  27. Oda, H. and Keane, W. F., Recent advances in statins and the kidney. Kidney Int., 71, S2–S5 (1999).CrossRefGoogle Scholar
  28. Paulino, N., Abreu, S. R., Uto, Y., Koyama, D., Nagasawa, H., Hori, H., Dirsch, V. M., Vollmar, A. M., Scremin, A., and Bretz, W. A., Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. Eur. J. Pharmacol., 587, 296–301 (2008).CrossRefPubMedGoogle Scholar
  29. Prasad, K. and Kalra, J., Oxygen free radicals and hypercholesterolaemic atherosclerosis: effect of vitamin E. Am. Heart J., 125, 958–973 (1993).CrossRefPubMedGoogle Scholar
  30. Scheuer, H., Gwinner, W., Hohbach, J., Gröne, E. F., Brandes, R. P., Malle, E., Olbricht, C. J., Walli, A. K., and Gröne, H. J., Oxidant stress in hyperlipidemia-induced renal damage. Am. J. Physiol. Renal Physiol., 278, 63–74 (2000).Google Scholar
  31. Smith Jr., S. C., Jackson, R., Pearson, T. A., Fuster, V., Yusuf, S., Faergeman, O., Wood, D. A., Alderman, M., Horgan, J., Home, P., Hunn, M., and Grundy, S. M., Principles for national and regional guidelines on cardiovascular disease prevention: a scientific statement from the World Heart and Stroke Forum. Circulation, 109, 3112–3121 (2004).CrossRefPubMedGoogle Scholar
  32. Steinberg, D., Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem., 272, 20963–20966 (1997).CrossRefPubMedGoogle Scholar
  33. Takahashi, Y., Zhu, H., and Yoshimoto, T., Essential roles of lipoxygenases in LDL oxidation and development of atherosclerosis. Antioxid. Redox Signal., 7, 425–431 (2005).CrossRefPubMedGoogle Scholar
  34. Tandon, V. and Gupta, R. K., Effect of Vitex negundo on oxidative stress. Indian J. Pharm., 37, 38–40 (2005).CrossRefGoogle Scholar
  35. Weisburger, J. H. and Chung, F. L., Mechanisms of chronic disease causation by nutritional factors and tobacco products and their prevention by tea polyphenols. Food Chem. Toxicol., 40, 1145–1154 (2002).CrossRefPubMedGoogle Scholar
  36. Yang, A. -L., Jen, C. J., and Chen, H. -I., Effect of high-cholesterol diet and parallel exercise training on the vascular function of rabbits aortas: a time course study. J. Appl. Physiol., 95, 1194–1200 (2003).PubMedGoogle Scholar
  37. Zulkhairi, A., Zaiton, Z., Jamaluddin, M., Sharida, F., Mohd, T. H., Hasnah, B., Nazmi, H. M., Khairul, O., and Zanariyah, A., Alpha lipoic acid posses dual antioxidant and lipid lowering properties in atherosclerotic-induced New Zealand White rabbit. Biomed. Pharmacother., 62, 716–722 (2008).CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Manar A. Nader
    • 1
  • Dina S. El-Agamy
    • 1
  • Ghada M. Suddek
    • 1
  1. 1.Department of Pharmacology and Toxicology, Faculty of PharmacyMansoura UniversityMansouraEgypt

Personalised recommendations