Archives of Pharmacal Research

, Volume 33, Issue 4, pp 601–609 | Cite as

The protective effect of resveratrol on dimethylnitrosamine-induced liver fibrosis in rats

  • Sang-Won Hong
  • Kyung Hee Jung
  • Hong-Mei Zheng
  • Hee-Seung Lee
  • Jun-Kyu Suh
  • In-Suh Park
  • Don-Haeng Lee
  • Soon-Sun Hong
Research Articles Drug Actions

Abstract

Oxidative stress in liver injury is a major pathogenetic factor in progress of liver fibrosis. Resveratrol, a representative antioxidant derived from grapes, has been reported to show widespread pharmacological properties. In this study, we investigated the protective effects of resveratrol on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Rats were treated with resveratrol daily by oral gavage for seven days after a single intraperitoneal injection of DMN (40 mg/kg). Resveratrol remarkably recovered body and liver weight loss due to DMNinduced liver fibrosis. Liver histology showed that resveratrol alleviated the infiltration of inflammatory cells and fibrosis of liver tissue. Resveratrol decreased the level of malondialdehyde and increased the levels of glutathione peroxidase and superoxide dismutase. Also, resveratrol significantly inhibited the mRNA expression of inflammatory mediators including inducible nitric oxide, tumor necrosis factor-alpha and interleukin-1beta. In addition, resveratrol showed not only reduced mRNA expression of fibrosis-related genes such as transforming growth factor beta 1, collagen type I, and alpha-smooth muscle actin, but also a significant decrease of hydroxyproline in rats with DMN-induced liver fibrosis. Our results suggest that resveratrol could be used to treat liver injury and fibrosis and be useful in preventing the development of liver fibrosis and cirrhosis.

Key words

Liver injury Resveratrol Antioxidant enzyme TGF-β1 Collagen type I α-SMA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajmo, J. M., Liang, X., Rogers, C. Q., Pennock, B., and You, M., Resveratrol alleviates alcoholic fatty liver in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 295, 833–842 (2008).CrossRefGoogle Scholar
  2. Bennett, R. G., Kharbanda, K. K., and Tuma, D. J., Inhibition of markers of hepatic stellate cell activation by the hormone relaxin. Biochem. Pharmacol., 66, 867–874 (2003).CrossRefPubMedGoogle Scholar
  3. Birrell, M. A., McCluskie, K., Wong, S., Donnelly, L. E., Barnes, P. J., and Belvisil, M. G., Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NFkappa B-independent mechanism. FASEB J., 19, 840–841 (2005).PubMedGoogle Scholar
  4. Bisht, K., Wagner, K. H., and Bulmer, A. C., Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds. Toxicology, Epub ahead of print (2009).Google Scholar
  5. Breitkopf, K., Sawitza, I., and Gressner, A. M., Characterization of intracellular pathways leading to coinduction of thrombospondin-1 and TGF-beta1 expression in rat hepatic stellate cells. Growth Factors, 23, 77–85 (2005).CrossRefPubMedGoogle Scholar
  6. Bujanda, L., Hijona, E., Larzabal, M., Beraza, M., Aldazabal, P., Garcia-Urkia, N., Sarasqueta, C., Cosme, A., Irastorza, B., Gonzalez, A., and Arenas, J. I., Jr., Resveratrol inhibits nonalcoholic fatty liver disease in rats. BMC Gastroenterol., 8, 35 (2008).CrossRefGoogle Scholar
  7. Cai, Y. J., Fang, J. G., Ma, L. P., Yang, L., and Liu, Z. L., Inhibition of free radical-induced peroxidation of rat liver microsomes by resveratrol and its analogues. Biochim. Biophys. Acta, 1637, 313–318 (2003).Google Scholar
  8. Caro, A. A. and Cederbaum, A. I., Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu. Rev. Pharmacol. Toxicol., 44, 27–42 (2004).CrossRefPubMedGoogle Scholar
  9. Casini, A., Ceni, E., Salzano, R., Milani, S., Schuppan, D., and Surrenti, C., Acetaldehyde regulates the gene expression of matrix-metalloproteinase-1 and -2 in human fat-storing cells. Life Sci., 55, 1311–1316 (1994).CrossRefPubMedGoogle Scholar
  10. Chavez, E., Reyes-Gordillo, K., Segovia, J., Shibayama, M., Tsutsumi, V., Vergara, P., Moreno, M. G., and Muriel, P., Resveratrol prevents fibrosis, NF-kappa B activation and TGF-beta increases induced by chronic CCl4 treatment in rats. J. Appl. Toxicol., 28, 35–43 (2008).CrossRefPubMedGoogle Scholar
  11. Chen, A. and Zhang, L., The antioxidant (-)-epigallocatechin-3-gallate inhibits rat hepatic stellate cell proliferation in vitro by blocking the tyrosine phosphorylation and reducing the gene expression of platelet-derived growth factorbeta receptor. J. Biol. Chem., 278, 23381–23389 (2003).CrossRefPubMedGoogle Scholar
  12. Cressman, D. E., Greenbaum, L. E., DeAngelis, R. A., Ciliberto, G., Furth, E. E., Poli, V., and Taub, R., Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science, 274, 1379–1383 (1996).CrossRefPubMedGoogle Scholar
  13. Donnelly, L. E., Newton, R., Kennedy, G. E., Fenwick, P. S., Leung, R. H., Ito, K., Russell, R. E., and Barnes, P. J., Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am. J. Physiol. Lung Cell Mol. Physiol., 287, L774–L783 (2004).CrossRefPubMedGoogle Scholar
  14. Ezquerro, I. J., Lasarte, J. J., Dotor, J., Castilla-Cortazar, I., Bustos, M., Penuelas, I., Blanco, G., Rodriguez, C., Lechuga Mdel, C., Greenwel, P., Rojkind, M., Prieto, J., and Borras-Cuesta, F., A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine, 22, 12–20 (2003).CrossRefPubMedGoogle Scholar
  15. Friedman, S. L., Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem., 275, 2247–2250 (2000).CrossRefPubMedGoogle Scholar
  16. George, J., Rao, K. R., Stern, R., and Chandrakasan, G., Dimethylnitrosamine-induced liver injury in rats: the early deposition of collagen. Toxicology, 156, 129–138 (2001).CrossRefPubMedGoogle Scholar
  17. Godichaud, S., Krisa, S., Couronne, B., Dubuisson, L., Merillon, J. M., Desmouliere, A., and Rosenbaum, J., Deactivation of cultured human liver myofibroblasts by trans-resveratrol, a grapevine-derived polyphenol. Hepatology, 31, 922–931 (2000).CrossRefPubMedGoogle Scholar
  18. Hierholzer, C., Harbrecht, B., Menezes, J. M., Kane, J., Macmicking, J., Nathan, C. F., Peitzman, A. B., Billiar, T. R., and Twardy, D. J., Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J. Exp. Med., 187, 917–928 (1998).CrossRefPubMedGoogle Scholar
  19. Jamall, I. S., Finelli, V. N., and Que Hee, S. S., A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues. Anal. Biochem., 112, 70–75 (1981).CrossRefPubMedGoogle Scholar
  20. Jaeschke, H., Reactive oxygen and mechanisms of inflammatory liver injury., J. Gastroenterol. Hepatol., 15, 718–724 (2000).CrossRefPubMedGoogle Scholar
  21. Kasdallah-Grissa, A., Mornagui, B., Aouani, E., Hammami, M., El May, M., Gharbi, N., Kamoun, A., and El-Fazaa, S., Resveratrol, a red wine polyphenol, attenuates ethanolinduced oxidative stress in rat liver. Life Sci., 80, 1033–1039 (2007).CrossRefPubMedGoogle Scholar
  22. Kim, K. Y., Rhim, T., Choi, I., and Kim, S. S., N-acetylcysteine induces cell cycle arrest in hepatic stellate cells through its reducing activity. J. Biol. Chem., 276, 40591–40598 (2001).CrossRefPubMedGoogle Scholar
  23. Leonard, S. S., Xia, C., Jiang, B. H., Stinefelt, B., Klandorf, H., Harris, G. K., and Shi, X., Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem. Biophys. Res. Commun., 309, 1017–1026 (2003).CrossRefPubMedGoogle Scholar
  24. Lopez-Velez, M., Martinez-Martinez, F., and Del Valle-Ribes, C., The study of phenolic compounds as natural antioxidants in wine. Crit. Rev. Food Sci. Nutr., 43, 233–244 (2003).PubMedGoogle Scholar
  25. Ma, Z. H., Ma, Q. Y., Wang, L. C., Sha, H. C., Wu, S. L., and Zhang, M., Effect of resveratrol on peritoneal macrophages in rats with severe acute pancreatitis. Inflamm. Res., 54, 522–527 (2005).CrossRefPubMedGoogle Scholar
  26. Malinski, J. A., Zera, E. M., Angleson, J. K., and Wensel, T. G., High affinity interactions of GTPgammaS with the heterotrimeric G protein, transducin. Evidence at high and low protein concentrations. J. Biol. Chem., 271, 12919–12924 (1996).CrossRefPubMedGoogle Scholar
  27. Niehaus, W. G., Jr. and Samuelsson, B., Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur. J. Biochem., 6, 126–130 (1968).CrossRefPubMedGoogle Scholar
  28. Nordmann, R., Alcohol and antioxidant systems. Alcohol Alcohol., 29, 513–522 (1994).PubMedGoogle Scholar
  29. Novo, E. and Parola, M., Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair, 1, 5 (2008).CrossRefPubMedGoogle Scholar
  30. Ohara, F., Nii, A., Sakiyama, Y., Tsuchiya, M., and Ogawa, S., Pathophysiological characteristics of dimethylnitrosamine-induced liver fibrosis in acute and chronic injury models: a possible contribution of KLF5 to fibrogenic responses. Dig. Dis. Sci., 53, 2222–2232 (2008).CrossRefPubMedGoogle Scholar
  31. Pinzani, M. and Marra, F., Cytokine receptors and signaling in hepatic stellate cells. Semin. Liver Dis., 21, 397–416 (2001).CrossRefPubMedGoogle Scholar
  32. Ramadori, G. and Armbrust T., Cytokines in the liver. Eur. J. Gastroenterol. Hepatol., 13, 777–784 (2001).CrossRefPubMedGoogle Scholar
  33. Rivera, H., Shibayama, M., Tsutsumi, V., Perez-Alvarez, V., and Muriel, P., Resveratrol and trimethylated resveratrol protect from acute liver damage induced by CCl4 in the rat. J. Appl. Toxicol., 28, 147–155 (2008).CrossRefPubMedGoogle Scholar
  34. Rushmore, T. H. and Kong, A. N., Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr. Drug Metab., 3, 481–490 (2002).CrossRefPubMedGoogle Scholar
  35. Shang, J., Chen, L., Xiao, F., Sun, H., Ding, H., and Xiao, H., Resveratrol improves non-alcoholic fatty liver disease by activating AMP activated protein kinase. Acta Pharmacol. Sin., 29, 698–706 (2008).CrossRefPubMedGoogle Scholar
  36. Seifert, W. F., Bosma, A., Hendriks, H. F., Van Leeuwen, R. E., Van Thiel-de Ruiter, G. C., Seifert-Bock, I., Knook, D. L., and Brouwer, A., Beta-carotene (provitamin A) decreases the severity of CCl4-induced hepatic inflammation and fibrosis in rats. Liver, 15, 1–8 (1995).PubMedGoogle Scholar
  37. Shafritz, D. A., Oertel, M., Menthena, A., Nierhoff, D., and Dabeva, M. D., Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology, 43, S89–S98 (2006).CrossRefPubMedGoogle Scholar
  38. Shiba, M., Shimizu, I., Yasuda, M., Ii, K., and Ito, S., Expression of type I and type III collagens during the course of dimethylnitrosamine-induced hepatic fibrosis in rats. Liver, 18, 196–204 (1998).PubMedCrossRefGoogle Scholar
  39. Sohara, N., Znoyko, I., Levy, M. T., Trojanowska, M., and Reuben, A., Reversal of activation of human myofibroblast-like cells by culture on a basement membrane-like substrate. J. Hepatol., 37, 214–221 (2002).CrossRefPubMedGoogle Scholar
  40. Tilg, H. and Diehl, A. M., Cytokines in alcoholic and nonalcoholic steatohepatitis. N. Engl. J. Med., 343, 1467–1476 (2000).CrossRefPubMedGoogle Scholar
  41. Wallace, J. D. and Levy, L. L., Blood pressure after stroke. JAMA, 246, 2177–2180 (1981).CrossRefPubMedGoogle Scholar
  42. Weber, L. W., Boll, M., and Stampfl, A., Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol., 33, 105–136 (2003).CrossRefPubMedGoogle Scholar
  43. Wills, P. J., Suresh, V., Arun, M., and Asha, V. V., Antiangiogenic effect of Lygodium flexuosum against Nnitrosodiethylamine-induced hepatotoxicity in rats. Chem. Biol. Interact., 164, 25–38 (2006).CrossRefPubMedGoogle Scholar
  44. Wolter, F., Ulrich, S., and Stein, J., Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in colorectal cancer: key role of polyamines? J. Nutr., 134, 3219–3222 (2004).PubMedGoogle Scholar
  45. Wu, L. C., Ho, J. A., Shieh, M. C., and Lu, I. W., Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. J. Agric. Food Chem., 53, 4207–4212 (2005).CrossRefPubMedGoogle Scholar
  46. Yasuda, M., Shimizu, I., Shiba, M., and Ito, S., Suppressive effects of estradiol on dimethylnitrosamine-induced fibrosis of the liver in rats. Hepatology, 29, 719–727 (1999).CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Sang-Won Hong
    • 1
  • Kyung Hee Jung
    • 1
  • Hong-Mei Zheng
    • 1
  • Hee-Seung Lee
    • 1
  • Jun-Kyu Suh
    • 1
  • In-Suh Park
    • 1
  • Don-Haeng Lee
    • 1
  • Soon-Sun Hong
    • 1
    • 2
  1. 1.Department of Biomedical Sciences and Clinical Research Center, College of MedicineInha UniversityIncheonKorea
  2. 2.College of MedicineInha UniversityIncheonKorea

Personalised recommendations