Advertisement

Archives of Pharmacal Research

, Volume 33, Issue 3, pp 463–468 | Cite as

The beneficial effects of olibanum on memory deficit induced by hypothyroidism in adult rats tested in Morris water maze

  • Mahmoud Hosseini
  • Mosa Al-Reza Hadjzadeh
  • Mohammad Derakhshan
  • Shahrzad Havakhah
  • Fatemeh Behnam Rassouli
  • Hassan Rakhshandeh
  • Fatema Saffarzadeh
Article

Abstract

Functional consequences of hypothyroidism include impaired learning and memory and inability to produce long-term potentiation (LTP) in hippocampus. Olibanum has been used for variety of therapeutic purposes. In traditional medicine, oilbanum is used to enhance learning and memory. In the present study the effect of olibanum on memory deficit in hypothyroid rats was investigated. Male wistar rats were divided into four groups and treated for 180 days. Group 1 received tap drinking water while in group 2, 0.03% methimazol was added to drinking water. Group 3 and 4 were treated with 0.03% methimazole as well as 100 and 500 mg/kg olibanum respectively. The animals were tested in Morris water maze. The swimming speed was significantly lower and the distance and time latency were higher in group 2 compared with group 1. In groups 3 and 4 the swimming speed was significantly higher while, the length of the swim path and time latency were significantly lower in comparison with group 2. It is concluded that methimazole-induced hypothyroidism impairs learning and memory in adult rats which could be prevented by using olibanum.

Key words

Boswellia serrata Hypothyroidism Learning Memory Olibanum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alaei, H., Moloudi, R., Sarkaki, A. R., Azizi-Malekabadi, H., and Hanninen, O., Daily running promotes spatial learning and memory in rats. Pathophysiology, 14, 105–108 (2007).CrossRefPubMedGoogle Scholar
  2. Alva-Sánchez, C., Ortiz-Butrón, R., Cuellar-García, M., Hernández-García, A., and Pacheco-Rosado, J., Anatomical changes in CA3 hippocampal region by hypothyroidism in rats. Proc. West. Pharmacol. Soc., 45, 125–126 (2002).PubMedGoogle Scholar
  3. Alzoubi, K. H., Aleisa A. M., Gerges, N. Z., and Alkadhi, K. A., Nicotine reverses adult-onset hypothyroidism-induced impairment of learning and memory: Behavioral and electrophysiological studies. J. Neurosci. Res., 8, 944–953 (2006).CrossRefGoogle Scholar
  4. Ambrogini, P., Cuppini, R., Ferri P., Manzini, C., Ciaroni, S., Voci, A., Gerdoni, E., and Gallo, G., Thyroid hormona affect neurogenesis in the dentate gyrus of adult rat. Neuroendocrinology, 81, 244–253 (2005).CrossRefPubMedGoogle Scholar
  5. Ampong, B., Honda, H., and Kogo, H., Effect of hypothyroidism on beta-adrenoceptor-mediated relaxation in the rat thoracic aortae. A time-dependent study. Vascul. Pharmacol., 38, 149–155 (2002).CrossRefPubMedGoogle Scholar
  6. Burmeister, L. A., Ganguli, M., Dodge, H. H., Toczek, T., DeKosky, S. T., and Nebes, R. D., Hypothyroidism and cognition: preliminary evidence for a specific defect in memory. Thyroid, 11, 1177–1185 (2001).CrossRefPubMedGoogle Scholar
  7. Cano-Europa, E., Pérez-Severiano, F., Vergara, P., Ortiz-Butrón, R., Ríos, C., Segovia, J., and Pacheco-Rosado, J., Hypothyroidism induces selective oxidative stress in amygdala and hippocampus of rat. Metab. Brain Dis., 23, 275–287 (2008).CrossRefPubMedGoogle Scholar
  8. Capet, C., Jego, A., Denis, P., Noel, D., Clerc, I., Cornier, A. C., Lefebvre, H., Lévesque, H., Chassagne, P., Bercoff, E., and Doucet, J., Is cognitive change related to hypothyroidism reversible with replacement therapy? Rev. Med. Interne., 21, 672–678 (2000).CrossRefPubMedGoogle Scholar
  9. Desouza, L. A., Ladiwala, U., Daniel, S. M., Agashe, S., Vahadilla, R. A., and Vahadilla, V. A., Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol. Cell. Neurosci., 29, 414–426 (2005).CrossRefPubMedGoogle Scholar
  10. Dong, J., Yin, H., Liu, W., Wang, P., Jiang, Y., and Chen, J., Congenital iodine deficiency and hypothyroidism impair LTP and decrease C-fos and C-jun expression in rat hippocampus. Neurotoxicology, 26, 417–426 (2005).CrossRefPubMedGoogle Scholar
  11. Dugbartey, A.T., Neurocognitive aspects of hypothyroidism. Arch. Intern. Med., 158, 1413–1418 (1998).CrossRefPubMedGoogle Scholar
  12. Gerges, N. Z., Alzoubi, K. H., Park, C. R., Diamond, D. M., and Alkadhi, K. A., Adverse effect of the combination of hypothyroidism and chronic psychosocial stress on hippocampus-dependent memory in rats. Behav. Brain Res., 155, 77–84 (2004).CrossRefPubMedGoogle Scholar
  13. Gerhardt, H., Seifert, F., Buvari, P., Vogelsang, H., and Repges, R., Therapy of active crohn disease with Boswellia serrata extract. Z. Gastroenterol., 39, 11–17 (2001).CrossRefPubMedGoogle Scholar
  14. Gupta, I., Gupta, V., Parihar, A., Gupta, S., Lüdtke, R., Safayh, H., and Ammon, H. P., Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a double-blind, placebo-controlled, 6-week clinical study. Eur. J. Med. Res., 3, 511–514 (1998).PubMedGoogle Scholar
  15. Gupta, I., Parihar, A., Malhotra, P., Gupta, S., Lüdtke, R., Safayhi, H., and Ammon, H. P., Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med., 67, 391–395 (2001).CrossRefPubMedGoogle Scholar
  16. Haggerty, J J. Jr., Garbutt, J. C., Evans, D. L., Golden, R. N., Pedersen, C., Simon, J. S., and Nemeroff, C. B., Subclinical hypothyroidism: a review of neuropsychiatric aspects. Int. J. Psychiatry Med., 20, 193–208 (1990).PubMedGoogle Scholar
  17. Hosseini-sharifabad, M., Esfandiary, E., and Alaei, H., Effect of frankincense aqueous extract during gestational period on increasing power of learning and memory in adult offspring. Journal of Isfahan Medical School, 71, 16–20 (2004).Google Scholar
  18. Hosseini-sharifabad, M., and Esfandiary, E., Quantitative analysis of hippocampal neuron number and size following prenatal administration of Boswellia serrata gum resin in adult rats. Journal of Isfahan Medical School, 77, 58–63 (2005).Google Scholar
  19. Hrabovszky, E., Kalló, I., Turi, G. F., May, K., Wittmann, G., Fekete, C., and Liposits, Z., Expression of vesicular glutamate transporter-2 in gonadotrope and thyrotrope cells of the rat pituitary. Endocrinology, 147, 3818–3825 (2004).CrossRefGoogle Scholar
  20. Kobayashi, K., Tsuji, R., Yoshioka, T., Kushida, M., Yabushita, S., Sasaki, M., Mino, T., and Seki T., Effects of hypothyroidism induced by perinatal exposure to PTU on rat behavior and synaptic gene expression. Toxicology, 212, 135–147 (2005).CrossRefPubMedGoogle Scholar
  21. Leal, A. L., Pantaleão, T. U., Moreira, D. G., Marassi, M. P., Pereira, V. S., Rosenthal, D., and Corrêa da Costa V. M., Hypothyroidism and hyperthyroidism modulates Ras-MAPK intracellular pathway in rat thyroids. Endocrine, 31, 174–178 (2007).CrossRefPubMedGoogle Scholar
  22. Lee P. R., Brady, D., and Koenig, J. I., Thyroid hormone regulation of N-methyl-D-aspartic acid receptor subunit mRNA expression in adult brain. J. Neuroendocrinol., 5, 87–92 (2003).CrossRefGoogle Scholar
  23. McDermott, M.T., and Ridgway, E.C., Subclinical hypothyroidism is mild thyroid failure and should be treated. J. Clin. Endocrinol. Metab., 86, 4585–4590 (2001).CrossRefPubMedGoogle Scholar
  24. Menon, M. K. and Kar, A., Analgesic and psychopharmacological effects of the gum resin of Boswellia serrata. Planta Med., 19, 333–341 (1971).CrossRefPubMedGoogle Scholar
  25. Miller, K. J., Parsons, T. D., Whybrow, P. C., Van Herle, K., Rasgon, N., Van Herle, A., Martinez, D., Silverman, D. H., and Bauer, M., Verbal memory retrieval deficits associated with untreated hypothyroidism. J. Neuropsychiatry Clin. Neurosci., 19, 132–136 (2007).PubMedGoogle Scholar
  26. Monteiro, S. C., Matté, C., Bavaresco, C. S., Netto, C. A., and Wyse, A. T., Vitamins E and C pretreatment prevents ovariectomy-induced memory defcits in water maze. Neurobiol. Learn. Mem., 84, 192–199 (2005).CrossRefPubMedGoogle Scholar
  27. Moussaieff, A., Fride, E., Amar, Z., Lev, E., Steinberg, D., Gallily, R., and Mechoulam, R., The jerusalem balsam: from the franciscan monastery in the old city of jerusalem to martindale. J. Ethnopharmacol., 101, 16–26 (2005).CrossRefPubMedGoogle Scholar
  28. Morris, R., Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods, 11, 47–60 (1984).CrossRefPubMedGoogle Scholar
  29. Moussaieff, A., Rimmerman, N., Bregman, T., Straiker, A., Felder, C. C., Shoham, S., Kashman, Y., Huang, S. M., Lee, H., Shohami, E., Mackie, K., Caterina, M. J., Walker, J. M., Fride, E., and Mechoulam, R., Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J., 1, 11–17 (2008).Google Scholar
  30. Nunez, J., Morris Water Maze Experiment. J. Vis. Exp., (19), (2008).Google Scholar
  31. Osterweil, D., Syndulko, K., Cohen, S. N., Pettler-Jennings, P. D., Hershman, J. M., Cummings, J. L., Tourtellotte, W. W., and Solomon, D. H., Cognitive function in non-demented older adults with hypothyroidism. J. Am. Geriatr. Soc., 40, 325–335 (1992).PubMedGoogle Scholar
  32. Pandey, R. S., Singh, B. K., and Tripathi, Y. B., Extract of gum resins of Boswellia serrata L. inhibits lipopolysaccharide induced nitric oxide production in rat macrophages along with hypolipidemic property. Indian J. Exp. Biol., 43, 509–516 (2005).PubMedGoogle Scholar
  33. Porterfield, S. P. and Hendrich, C. E., The role of thyroid hormones in prenatal and neonatal neurological development: current perspectives. Endocr. Rev., 14, 94–106 (1993).PubMedGoogle Scholar
  34. Schutová, B., Hrubá, L., Pometlová, M., Deykun, K., and Slamberová, R., Impact of methamphetamine administered prenatally and in adulthood on cognitive functions of male rats tested in Morris water maze. Prague Med. Rep., 109, 62–70 (2008).PubMedGoogle Scholar
  35. Shao, Y., Ho, C. T., Chin, C. K., Badmaev, V., Ma, W., and Huang, M. T., Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture. Planta Med., 64, 328–331 (1998).CrossRefPubMedGoogle Scholar
  36. Sharifzadeh, M., Aghsami, M., Gholizadeh, S., Tabrizian, K., Soodi, M., Khalaj, S., Ranjbar, A., Hosseini-Sharifabad, A., Roghani, A., and Karimfar, M. H., Protective effects of chronic lithium treatment against spatial memory retention deficits induced by the protein kinase AII inhibitor H-89 in rats. Pharmacology, 80, 158–165 (2007).CrossRefPubMedGoogle Scholar
  37. Sharma, A., Mann, A. S., Gajbhiye, V., and Kharya, M. D., Phytochemical profile of Boswellia serrata: An overview. Pharmacog. Rev., 1, 137–142 (2007).Google Scholar
  38. Sharma, M. L., Bani, S., and Singh, G. B., Anti-arthritic activity of boswellic acids in bovine serum albumin (BSA)-induced arthritis. Int. J. Immunopharmacol., 11, 647–652 (1989).CrossRefPubMedGoogle Scholar
  39. Shuaib, A., Ijaz, S., Hemmings, S., Galazka, P., Ishaqzay, R., Liu, L., Ravindran, J., and Miyashita H., Decreased glutamate release during hypothyroidism may contribute to protection in cerebral ischemia. Exp. Neurol., 128, 260–265 (1994).CrossRefPubMedGoogle Scholar
  40. Singh, G. B. and Atal, C. K., Pharmacology of an extract of salai guggal ex-Boswellia serrata, a new non-steroidal antiinflammatory agent. Agents Actions, 18, 407–412 (1986).CrossRefPubMedGoogle Scholar
  41. Smith, J. W., Evans, A. T., Costall, B., and Smythe, J. W., Thyroid hormones, brain function, and cognition: a brief review. Neurosci. Biobehav. Rev., 26, 45–60 (2002).CrossRefPubMedGoogle Scholar
  42. Sui, L., Wang, F., and Li, B.M., Adult-onset hypothyroidism impairs paired-pulse facilitation and long-term potentiation of the rat dorsal hippocampo-medial prefrontal cortex pathway in vivo. Brain Res., 1096, 53–60 (2006).CrossRefPubMedGoogle Scholar
  43. Timiras, P. S. and Nzekwe, E. U., Thyroid hormones and nervous system development. Biol. Neonate, 55, 376–385 (1989).CrossRefPubMedGoogle Scholar
  44. Vallortigara, J., Alfos, S., Micheau, J., Higueret, P., and Enderlin, V., T3 administration in adult hypothyroid mice modulates expression of proteins involved in striatal synaptic plasticity and improves motor behavior. Neurobiol. Dis., 31, 378–385 (2008).CrossRefPubMedGoogle Scholar
  45. Vara, H., Martínez, B., Santos, A., and Colino, A., Thyroid hormone regulates neurotransmitter release in neonatal rat hippocampus. Neuroscience, 110, 19–28 (2002).CrossRefPubMedGoogle Scholar
  46. Whybrow, P. C. and Bauer, M., Behavioral and psychiatric aspects of hypothyroidism, in the thyroid. In Braverman, L. E., and Utiger, R. D., A fundamental and clinical text. Lippincott Raven, Philadelphia, pp. 842–849, (2005).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Mahmoud Hosseini
    • 1
    • 5
  • Mosa Al-Reza Hadjzadeh
    • 1
  • Mohammad Derakhshan
    • 2
  • Shahrzad Havakhah
    • 1
  • Fatemeh Behnam Rassouli
    • 3
  • Hassan Rakhshandeh
    • 4
  • Fatema Saffarzadeh
    • 1
  1. 1.Department of Physiology, School of MedicineMashhad University of Medical Sciences (MUMS)MashhadIran
  2. 2.Department of Clinical Microbiology and Virology in Ghaem Medical Center (Hospital) and Buali Research Institute Mashhad University of Medical Sciences (MUMS)MashhadIran
  3. 3.Department of Biology, Faculty of SciencesFerdowsi University of MashhadMashhadIran
  4. 4.Department of Pharmacology and Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences (MUMS)MashhadIran
  5. 5.Department of Physiology, Medical SchoolMashhad University of Medical SciencesMashhadIran

Personalised recommendations