Archives of Pharmacal Research

, Volume 33, Issue 2, pp 325–333 | Cite as

Antihyperglycemic and antihyperlipidemic action of Cinnamomi Cassiae (Cinnamon bark) extract in C57BL/Ks db/db mice

  • Sung Hee Kim
  • Se Young ChoungEmail author
Research Articles Drug Actions


In previous study, the anti-diabetic effect of Cinnamomi Cassiae extract (Cinnamon bark: Lauraceae) in a type II diabetic animal model (C57BIKsj db/db) has been reported. To explore their mechanism of action, in present study, the effect of cinnamon extract on anti-hyperglycemia and anti-hyperlipidemia was evaluated by measuring the blood glucose levels, serum insulin, and adiponectin levels, serum and hepatic lipids, PPARα mRNA expression in liver and PPARγ mRNA expression in adipose tissue, respectively. Male C57BIKs db/db mice were divided into a diabetic group and cinnamon extract treated group and examined for a period of 12 weeks (200 mg/kg, p.o). The fasting blood glucose and postprandial 2 h blood glucose levels in the cinnamon treated group were significantly lower than those in the control group (p < 0.01), whereas the serum insulin and adiponectin levels were significantly higher in the cinnamon treated group than in the control group (p < 0.05). The serum lipids and hepatic lipids were improved in the cinnamon administered group. Also the PPARα mRNA (liver) and PPARγ mRNA (adipose tissue) expression levels were increased significantly in the cinnamon treated group (p < 0.05). Our results suggest that cinnamon extract significantly increases insulin sensitivity, reduces serum, and hepatic lipids, and improves hyperglycemia and hyperlipidemia possibly by regulating the PPAR-medicated glucose and lipid metabolism.

Key words

Cinnamomi Cassia Anti-hyperglycemia Anti-hyperlipidemia Adiponectin PPARα PPARγ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chou, C. J., Haluzik, M., Gregory, C., Dietz, K. R., Vinson, C., Gavrilova, O., and Reitman, M. L., WY14, 643, a peroxisome proliferator-activated receptor alpha (PPARalpha) agonist, improves hepatic and muscle steatosis and reverses insulin resistance in lipoatrophic A-ZIP/F-1 mice. J. Biol. Chem., 227, 24484–24489 (2002).CrossRefGoogle Scholar
  2. Etgen, G. J., Oldham, B. A., Johnson, W. T., Broderick, C. L., Montrose, C. R., Brozinick, J. T., Misener, E. A., Bean, J. S., Bensch, W. R., Brooks, D. A., Shuker, A. J., Rito, C. J., Mccarthy, J. R., Ardecky, R. J., Tyhonas, J. S., Dana, S. L., Bilakovics, J. M., Patemiti, J. R., Ogilivie, K. M., Liu, S., and Kauffman, R. F., A tailored therapy for the metabolic syndrome: the dual peroxisome proliferators — activated receptor-alpha/gamma agonist LY465608 ameliorates insulin resistance and diabetic hyperglycemia while improving cardiovascular risk factors in preclinical models. Diabetes, 51, 1083–1087 (2002).CrossRefPubMedGoogle Scholar
  3. Folch, J., Lees, M., and Sloane Stanley, G. H., A simple method for the isolation and purification of total lipids from animal tissue, J. Biol. Chem., 226, 497–509 (1957).PubMedGoogle Scholar
  4. Frias, J. P., Yu, J. G., Kruszynska, Y. T., and Olefsky, J. M., Metabolic effects of troglitazone therapy in type 2 diabetic, obese, and lean normal subjects. Diabetes Care, 23, 64–69 (2000).CrossRefPubMedGoogle Scholar
  5. Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., Bihain, B. E., and Lodish, H. F., Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. U S A., 98, 2005–2010 (2001).CrossRefPubMedGoogle Scholar
  6. Gesler, W. W., Therapeutic landscapes: medical issues in light of the new cultural Geography. Soc. Sci. Med., 34, 735–746 (1992).CrossRefPubMedGoogle Scholar
  7. Guo, Q., Sahoo, S. P., Wang, P. R., Milot, D. P., Ippolito, M. C., Wu, M. S., Baffic, J., Biswas, C., Hernandez, M., Lam, M. H., Sharma, N., Han, W., Kelly, L. J., MacNaul, K. L., Zhou, G. Desai, R., Heck, J. V., Doebber, T. W., Berger, J. P., Moller, D. E., Sparrow, C. P., Chao, Y. S., and Wright, S. D., A Novel Peroxisome Proliferator-Activated Receptor α/γ Dual Agonist Demonstrates Favorable Effects on Lipid Homeostasis. Endocrinology, 145, 1640–1648 (2004).CrossRefPubMedGoogle Scholar
  8. Haban, P., Simoncic, R., Zidekova, E., and Ozdin, L., Role of fasting serum C-peptide as a predictor of cardiovascular risk associated with the metabolic X-syndrome. Med. Sci. Monit., 8, 175–179 (2002).Google Scholar
  9. Herz, M., Johns, D., Reviriego, J., Grossman, L. D., Godin, C., Duran, S., Hawkins F., Lochnan, H., Escobar-jimenez, F., Hardin, P. A., Konkoy, C. S., and Tan, M. H., A randomized, double-blind, placebo-controlled, clinical trial of the effects of pioglitazone on glycemic control and dyslipidemia in oral antihyperglycemic medication-naive patients with type 2 diabetes mellitus. Clin. Ther., 25, 1074–1095 (2003).CrossRefPubMedGoogle Scholar
  10. Hsueh, W. A. and Law, R., The central role of fat and effect of peroxisome proliferator activated receptor-gamma on progression of insulin resistance and cardiovascular disease. Am. J. Cardiol., 92, 3J–9J (2003).CrossRefPubMedGoogle Scholar
  11. Jackson, S. M., Parhami, F., Xi, X. P., Berliner, J. A., Hsueh, W. A., Law, R. E., and Demer, L. L., Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction, Arterioscler. Thromb. Vasc. Biol., 19, 2094–2104 (1999).PubMedGoogle Scholar
  12. Kersten, S., Seydoux, J., Peters, J. M., Gonzalez, F. J., Desvergne, B., and Wahli, W., Peroxisome proliferatoractivated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest., 103, 1489–1498 (1999).CrossRefPubMedGoogle Scholar
  13. Kim, H., Haluzik, M., Asghar, Z., Yau, D., Joseph, J. W., Fernandez, A. M., Reitman, M. L., Yakar, S., Stannard, B., Heron-Milhavet, M. B., and Wheeler, D., Peroxisome proliferator-activated receptor-alpha agonist treatment in a transgenic model of type 2 diabetes reverse the lipotoxic state and improves glucose homeostasis. Diabetes, 52, 1770–1778 (2003).CrossRefPubMedGoogle Scholar
  14. Kimura, S., Tomita, M., Froguel, P., and Kadowoki, T., The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med., 7, 941–946 (2001).CrossRefPubMedGoogle Scholar
  15. Kintscher, U. and Law, R. E., PPARgamma-mediated insulin sensitization: the importance of fat versus muscle. Am. J. Physiol. Endocrinol. Metab., 288, 287–291 (2005).CrossRefGoogle Scholar
  16. Kitahara, Y., Miura, K., Takesue, K., Mine, T., Wada, R., Uchida, Y., lto, S., and Yagihashi, S., Decreased blood glucose excursion by nateglinide ameliorated neuropathic changes in Goto-Kakizaki rats, an animal model of nonobese type 2 diabetes, Metabolism, 51, 1452–1457 (2002).CrossRefPubMedGoogle Scholar
  17. Kubota, N., Terauchi, Y., Miki, H., Tamemoto, H., Yamauchi, T., Komeda, K., Satoh, S., Nakano, R., Ishii, C., Sugiyama, T., Eto, K., Tsubamoto, Y., Okuno, A., Murakami, K., Sekihara, H., Hasegawa, G., Naito, M., Toyoshima, Y., Tanaka, S., Shiota, K., Kitamura, T., Fujta, T., Ezaki, O., Aizawa, S., and Kadowaki, T., PPARgamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell, 4, 597–609 (1999).CrossRefPubMedGoogle Scholar
  18. Lee, C. H., Olson, P., and Evans, R. M., Mini review: lipid metabolism, metabolic diseases, and peroxisome proliferators-activated receptors. Endocrinology, 144, 2201–2207 (2003).CrossRefPubMedGoogle Scholar
  19. Maeda, N., Takahashi, M., Funahashi, T., Kihara, S., Nishizawa, H., Kishida, K., Nagaretani, H., Matsuda, M., Komuro, R., Ouchi, N., Kuriyama, H., Hotta, K., Nakamura, T., Shimomura, I., and Matsuzawa, Y., PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes, 50, 2094–2099 (2001).CrossRefPubMedGoogle Scholar
  20. Miyazaki, Y., Mahankli, A., Matsuda, M., Glass, L., Mahankali, S., Ferrannini, E., Cusi, K., Mandarino, L. J., and DeFronzo, R. A., Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care, 24, 710–719 (2001).CrossRefPubMedGoogle Scholar
  21. Nolan, J. J., Ludvik, B., Beerdsen, P., Joyce, M., and Olefsky, J., Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med., 331, 1188–1193 (1994).CrossRefPubMedGoogle Scholar
  22. Raskin, P., Rappaport, E. B., Cole, S. T., Yan, Y., Patwardhan, R., and Freed, M. I., Rosiglitazone short-term monotherapy lowers fasting and post-prandial glucose in patients with type diabetes. Diabetologia, 43, 278–284 (2000).CrossRefPubMedGoogle Scholar
  23. Reddy, J. K. and Hashimoto, T., Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu. Rev. Nutr., 21, 193–230 (2001).CrossRefPubMedGoogle Scholar
  24. Ryan, A. S., Berman, D. M., Nicklas, B. J., Sinba, M., Gingerich, R. L., Meneilly, G. S., Egan, J. M., and Elahi, D., Plasma adiponectin and leptin levels, body composition, and glucose utilization in adult women with wide ranges of age and obesity. Diabetes Care, 26, 2383–2388 (2003).CrossRefPubMedGoogle Scholar
  25. Schoonjans, K., Watanabe, M., Suzuki, H., Mahfoudi, A., Krey, G., Wahli, W., Grimaldi, P., Staels, B., Yamamoto, T., and Auwerx, J., Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferators response element in the C promoter. J. Biol. Chem., 270, 19269–19276 (1995).CrossRefPubMedGoogle Scholar
  26. Spratt, K. A., A clinician’s guide to a woman’s heart. J. Am. Osteopath. Assoc., 98, 1–6 (1998).Google Scholar
  27. Staels, B., Dallongeville, J., Auwerx, J., Schoonjans, K., Leitersdorf, E., and Fruchart, J. C., Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation, 98, 2088–2093 (1998).PubMedGoogle Scholar
  28. Sugden, M. C. and Holness, M. J., Potential role of peroxisome proliferator-activated activated receptor-alpha in the modulation of glucose-stimulated insulin secretion. Diabetes, 53, S71–S81 (2004).CrossRefPubMedGoogle Scholar
  29. Tontonoz, P., Hu, E., and Spiegelman, B. M., Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipidactivated transcription factor. Cell, 79, 1147–1156 (1994).CrossRefPubMedGoogle Scholar
  30. Vidal-Puig, A. J., Considine, R. V., Jimenez-Linan, M., Werman, A., Pories, W. J., Caro, J. F., and Flier, J. S., Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J. Clin. Invest., 99, 2416–2422 (1997).CrossRefPubMedGoogle Scholar
  31. Yamauchi, T., Kamon, J., Waki, H., Murakami, K., Motojima, K., Komeda, K., Ide, T., Kubota, N., Terauchi, Y., Tobe, K., Miki, H., Tsuchida, A., Akanuma, Y., Nagai, R., Kimura, S., and Kadowaki, T., The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma (PPAR gamma) deficiency and PPAR gamma agonist improve insulin resistance. J. Biol. Chem., 276, 41245–41254 (2001).CrossRefPubMedGoogle Scholar
  32. Yang, W. S., Lee, W. J., Funahashi, T., Tanaka, S., Matsuzawa, Y., Chao, C. L., Chen, C. L., Tai, T. Y., and Chuang, L. M., Weight reducation increases plasma levels of an adiposederived anti-inflammatory protein, adiponectin. J. Clin. Endocrinol. Metab., 86, 3815–3819 (2001).CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Department of Hygienic Chemistry, College of PharmacyKyung Hee UniversitySeoulKorea

Personalised recommendations