Archives of Pharmacal Research

, Volume 33, Issue 2, pp 215–223 | Cite as

Bee venom protects hepatocytes from tumor necrosis factor-α and actinomycin D

  • Ji-Hyun Park
  • Kyung-Hyun Kim
  • Soo-Jung Kim
  • Woo-Ram Lee
  • Kwang-Gill Lee
  • Kwan-Kyu Park
Research Articles Drug Discovery and Development

Abstract

Honeybee (Apis mellifera) venom (BV) has a broad array of therapeutic applications in traditional medicine to treat variety of diseases. It is also known that BV possesses anti-inflammatory and anticancer effect and that it can inhibit proliferation and induces apoptosis in cancer cells, but there is no evidence of information regarding anti-apoptosis of BV on hepatocytes. In the present study, we investigated the anti-apoptotic effect of BV on tumor necrosis factor (TNF)-α with actinomycin (Act) D induces apoptosis in hepatocytes. TNF-α/Act D-treated hepatocytes were exposed to different low concentration (1, 10 and 100 ng/mL) of BV. Our results showed statistically significant inhibition in DNA damage caused by BV treatment compared to corresponding TNF-α/Act D-treated hepatocytes. BV suppressed TNF-α/Act Dtreated activation of bcl-2 family and caspase family, which resulted in inhibition of cytochrome c release and PARP cleavage. These results demonstrate that low concentration BV possess a potent suppressive effect on anti-apoptotic responses of TNF-α/Act D-treated hepatocytes and suggest that these compounds may contribute substantial therapeutic potential for the treatment of liver diseases.

Key words

Bee venom Caspase Bcl-2 TNF-α Hepatocyte Liver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billingham, M. E., Morley, J., Hanson, J. M., Shipolini, R. A., and Vernon, C. A., Letter: An anti-inflammatory peptide from bee venom. Nature, 245, 163–164 (1973).CrossRefPubMedGoogle Scholar
  2. Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X., Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol., 15, 269–290 (1999).CrossRefPubMedGoogle Scholar
  3. Cursio, R., Gugenheim, J., Ricci, J. E., Crenesse, D., Rostagno, P., Maulon, L., Saint-Paul, M. C., Ferrua, B., Mouiel, J., and Auberger, P., Caspase inhibition protects from liver injury following ischemia and reperfusion in rats. Transpl. Int., 13Suppl 1, S568–S572 (2000).CrossRefPubMedGoogle Scholar
  4. Ding, W. X. and Yin, X. M., Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J. Cell. Mol. Med., 8, 445–454 (2004).CrossRefPubMedGoogle Scholar
  5. Earnshaw, W. C., Martins, L. M., and Kaufmann, S. H., Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem., 68, 383–424 (1999).CrossRefPubMedGoogle Scholar
  6. Gajski, G. and Garaj-Vrhovac, V., Radioprotective effects of honeybee venom (Apis mellifera) against 915-MHz microwave radiation-induced DNA damage in wistar rat lymphocytes: in vitro study. Int. J. Toxicol., 28, 88–98 (2009).CrossRefPubMedGoogle Scholar
  7. Garaj-Vrhovac, V. and Gajski, G., Evaluation of the cytogenetic status of human lymphocytes after exposure to a high concentration of bee venom in vitro. Arh. Hig. Rada Toksikol., 60, 27–34 (2009).PubMedGoogle Scholar
  8. Han, S., Lee, K., Yeo, J., Kweon, H., Woo, S., Lee, M., Baek, H., Kim, S., and Park, K., Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factoralpha production stimulated by LPS. J. Ethnopharmacol., 111, 176–181 (2007).CrossRefPubMedGoogle Scholar
  9. Higuchi, H., Adachi, M., Miura, S., Gores, G. J., and Ishii, H., The mitochondrial permeability transition contributes to acute ethanol-induced apoptosis in rat hepatocytes. Hepatology, 34, 320–328 (2001).CrossRefPubMedGoogle Scholar
  10. Hong, S. J., Rim, G. S., Yang, H. I., Yin, C. S., Koh, H. G., Jang, M. H., Kim, C. J., Choe, B. K., and Chung, J. H., Bee venom induces apoptosis through caspase-3 activation in synovial fibroblasts of patients with rheumatoid arthritis. Toxicon, 46, 39–45 (2005).CrossRefPubMedGoogle Scholar
  11. Hu, H., Chen, D., Li, Y., and Zhang, X., Effect of polypeptides in bee venom on growth inhibition and apoptosis induction of the human hepatoma cell line SMMC-7721 in-vitro and Balb/c nude mice in-vivo. J. Pharm. Pharmacol., 58, 83–89 (2006).CrossRefPubMedGoogle Scholar
  12. Jacobson, M. D., Weil, M., and Raff, M. C., Programmed cell death in animal development. Cell, 88, 347–354 (1997).CrossRefPubMedGoogle Scholar
  13. Jang, M. H., Shin, M. C., Lim, S., Han, S. M., Park, H. J., Shin, I., Lee, J. S., Kim, K. A., Kim, E. H., and Kim, C. J., Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. J. Pharmacol. Sci., 91, 95–104 (2003).CrossRefPubMedGoogle Scholar
  14. Jones, R. A., Johnson, V. L., Buck, N. R., Dobrota, M., Hinton, R. H., Chow, S. C., and Kass, G. E., Fas-mediated apoptosis in mouse hepatocytes involves the processing and activation of caspases. Hepatology, 27, 1632–1642 (1998).CrossRefPubMedGoogle Scholar
  15. Kammerer, R., Chvatchko, Y., Kettner, A., Dufour, N., Corradin, G., and Spertini, F., Modulation of T-cell response to phospholipase A2 and phospholipase A2-derived peptides by conventional bee venom immunotherapy. J. Allergy Clin. Immunol., 100, 96–103 (1997).CrossRefPubMedGoogle Scholar
  16. Kim, T. H., Zhao, Y., Barber, M. J., Kuharsky, D. K., and Yin, X. M., Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J. Biol. Chem., 275, 39474–39481 (2000).CrossRefPubMedGoogle Scholar
  17. Kwon, Y. B., Lee, H. J., Han, H. J., Mar, W. C., Kang, S. K., Yoon, O. B., Beitz, A. J., and Lee, J. H., The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci., 71, 191–204 (2002).CrossRefPubMedGoogle Scholar
  18. Kwon, Y. B., Lee, J. D., Lee, H. J., Han, H. J., Mar, W. C., Kang, S. K., Beitz, A. J., and Lee, J. H., Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain, 90, 271–280 (2001).CrossRefPubMedGoogle Scholar
  19. Lariviere, W. R. and Melzack, R., The bee venom test: a new tonic-pain test. Pain, 66, 271–277 (1996).CrossRefPubMedGoogle Scholar
  20. Lee, Y. J., Kang, S. J., Kim, B. M., Kim, Y. J., Woo, H. D., and Chung, H. W., Cytotoxicity of honeybee (Apis mellifera) venom in normal human lymphocytes and HL-60 cells. Chem. Biol. Interact., 169, 189–197 (2007).CrossRefPubMedGoogle Scholar
  21. Leist, M., Gantner, F., Bohlinger, I., Germann, P. G., Tiegs, G., and Wendel, A., Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest. J. Immunol., 153, 1778–1788 (1994).PubMedGoogle Scholar
  22. Li, J., Yang, S., and Billiar, T. R., Cyclic nucleotides suppress tumor necrosis factor alpha-mediated apoptosis by inhibiting caspase activation and cytochrome c release in primary hepatocytes via a mechanism independent of Akt activation. J. Biol. Chem., 275, 13026–13034 (2000).CrossRefPubMedGoogle Scholar
  23. Liao, J. H., Chen, J. S., Chai, M. Q., Zhao, S., and Song, J. G., The involvement of p38 MAPK in transforming growth factor beta1-induced apoptosis in murine hepatocytes. Cell Res., 11, 89–94 (2001).CrossRefPubMedGoogle Scholar
  24. Lindahl, T., Satoh, M. S., Poirier, G. G., and Klungland, A., Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem. Sci., 20, 405–411 (1995).CrossRefPubMedGoogle Scholar
  25. Liu, X., Chen, D., Xie, L., and Zhang, R., Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. J. Pharm. Pharmacol., 54, 1083–1089 (2002).CrossRefPubMedGoogle Scholar
  26. Matsumaru, K., Ji, C., and Kaplowitz, N., Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes. Hepatology, 37, 1425–1434 (2003).CrossRefPubMedGoogle Scholar
  27. Micheau, O. and Tschopp, J., Induction of TNF receptor Imediated apoptosis via two sequential signaling complexes. Cell, 114, 181–190 (2003).CrossRefPubMedGoogle Scholar
  28. Miyashita, T., Krajewski, S., Krajewska, M., Wang, H. G., Lin, H. K., Liebermann, D. A., Hoffman, B., and Reed, J. C., Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 9, 1799–1805 (1994).PubMedGoogle Scholar
  29. Moon, D. O., Park, S. Y., Heo, M. S., Kim, K. C., Park, C., Ko, W. S., Choi, Y. H., and Kim, G. Y., Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. Int. Immunopharmacol., 6, 1796–1807 (2006).CrossRefPubMedGoogle Scholar
  30. Musallam, L., Ethier, C., Haddad, P. S., and Bilodeau, M., EGF mediates protection against Fas-induced apoptosis by depleting and oxidizing intracellular GSH stocks. J. Cell. Physiol., 198, 62–72 (2004).CrossRefPubMedGoogle Scholar
  31. Nam, K. W., Je, K. H., Lee, J. H., Han, H. J., Lee, H. J., Kang, S. K., and Mar, W., Inhibition of COX-2 activity and proinflammatory cytokines (TNF-alpha and IL-1beta) production by water-soluble sub-fractionated parts from bee (Apis mellifera) venom. Arch. Pharm. Res., 26, 383–388 (2003).CrossRefPubMedGoogle Scholar
  32. Nam, S., Ko, E., Park, S. K., Ko, S., Jun, C. Y., Shin, M. K., Hong, M. C., and Bae, H., Bee venom modulates murine Th1/Th2 lineage development. Int. Immunopharmacol., 5, 1406–1414 (2005).CrossRefPubMedGoogle Scholar
  33. Orsolic, N., Sver, L., Verstovsek, S., Terzic, S., and Basic, I., Inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon, 41, 861–870 (2003).CrossRefPubMedGoogle Scholar
  34. Perez-Paya, E., Houghten, R. A., and Blondelle, S. E., The role of amphipathicity in the folding, self-association and biological activity of multiple subunit small proteins. J. Biol. Chem., 270, 1048–1056 (1995).CrossRefPubMedGoogle Scholar
  35. Stennicke, H. R., Jurgensmeier, J. M., Shin, H., Deveraux, Q., Wolf, B. B., Yang, X., Zhou, Q., Ellerby, H. M., Ellerby, L. M., Bredesen, D., Green, D. R., Reed, J. C., Froelich, C. J., and Salvesen, G. S., Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem., 273, 27084–27090 (1998).CrossRefPubMedGoogle Scholar
  36. Stennicke, H. R. and Salvesen, G. S., Properties of the caspases. Biochim. Biophys. Acta, 1387, 17–31 (1998).PubMedGoogle Scholar
  37. Tarn, C., Bilodeau, M. L., Hullinger, R. L., and Andrisani, O. M., Differential immediate early gene expression in conditional hepatitis B virus pX-transforming versus nontransforming hepatocyte cell lines. J. Biol. Chem., 274, 2327–2336 (1999).CrossRefPubMedGoogle Scholar
  38. Wolter, K. G., Hsu, Y. T., Smith, C. L., Nechushtan, A., Xi, X. G., and Youle, R. J., Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol., 139, 1281–1292 (1997).CrossRefPubMedGoogle Scholar
  39. Yin, C. S., Lee, H. J., Hong, S. J., Chung, J. H., and Koh, H. G., Microarray analysis of gene expression in chondrosarcoma cells treated with bee venom. Toxicon, 45, 81–91 (2005).CrossRefPubMedGoogle Scholar
  40. Yin, X. M., Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res., 10, 161–167 (2000).CrossRefPubMedGoogle Scholar
  41. Yoon, S. Y., Kwon, Y. B., Kim, H. W., Roh, D. H., Seo, H. S., Han, H. J., Lee, H. J., Beitz, A. J., Hwang, S. W., and Lee, J. H., Peripheral bee venom’s anti-inflammatory effect involves activation of the coeruleospinal pathway and sympathetic preganglionic neurons. Neurosci. Res., 59, 51–59 (2007).CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Ji-Hyun Park
    • 1
  • Kyung-Hyun Kim
    • 1
  • Soo-Jung Kim
    • 1
  • Woo-Ram Lee
    • 1
  • Kwang-Gill Lee
    • 2
  • Kwan-Kyu Park
    • 1
  1. 1.Department of PathologyCatholic University of Daegu, College of MedicineDaeguKorea
  2. 2.Department of Agricultural BiologyNational Institute of Agricultural Science and TechnologySuwonKorea

Personalised recommendations