Advertisement

Archives of Pharmacal Research

, 32:1485 | Cite as

Drugs targeting toll-like receptors

  • Jayalakshmi Krishnan
  • Gwang Lee
  • Sangdun Choi
Review

Abstract

Animals and plants are exposed to myriads of potential microbial invaders. In case of animals, Toll-like receptors (TLRs) act as the primary defense against infection by pathogens. Arguably, less is known regarding the activation of TLRs that connect the innate and adaptive immune systems. Some TLR ligands have been used as adjuvants in various vaccines and have gained a great deal of attention due to their ability to elicit an effective immune response. Understanding the intricate relationships between various molecules involved in TLR signaling and their positive or negative regulation is a key focus for the development of effective therapeutics. In this review, recent developments in TLR signaling that will be very important in providing new drug target molecules and a better understanding of molecular regulation of innate immunity are discussed.

Key words

Agonist Drug Inhibitor Innate immunity Toll-like receptor 

References

  1. Adams, M., Navabi, H., Jasani, B., Man, S., Fiander, A., Evans, A. S., Donninger, C., and Mason, M., Dendritic cell (DC) based therapy for cervical cancer: use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly [I]:poly [C(12)U] (Ampligen R). Vaccine, 21, 787–790 (2003).PubMedCrossRefGoogle Scholar
  2. Akira, S., Uematsu, S., and Takeuchi, O., Pathogen recognition and innate immunity. Cell, 124, 783–801 (2006).PubMedCrossRefGoogle Scholar
  3. An, H., Zhao, W., Hou, J., Zhang, Y., Xie, Y., Zheng, Y., Xu, H., Qian, C., Zhou, J., Yu, Y., Liu, S., Feng, G., and Cao, X., SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity, 25, 919–928 (2006).PubMedCrossRefGoogle Scholar
  4. Anantharaman, V. and Aravind, L., The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biol, 3, research0023 (2002).Google Scholar
  5. Applequist, S. E., Rollman, E., Wareing, M. D., Liden, M., Rozell, B., Hinkula, J., and Ljunggren, H. G., Activation of innate immunity, inflammation, and potentiation of DNA vaccination through mammalian expression of the TLR5 agonist flagellin. J. Immunol., 175, 3882–3891 (2005).PubMedGoogle Scholar
  6. Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C., and Calderwood, S. K., HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med., 6, 435–442 (2000).PubMedCrossRefGoogle Scholar
  7. Atkinson, T. J., Toll-like receptors, transduction-effector pathways, and disease diversity: Evidence of an immunobiological paradigm explaining all human illness? Int. Rev. Immunol., 27, 255–281 (2008).PubMedCrossRefGoogle Scholar
  8. Barton, G. M., Kagan, J. C., and Medzhitov, R., Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol., 7, 49–56 (2006).PubMedCrossRefGoogle Scholar
  9. Beutler, B., Inferences, questions and possibilities in Tolllike receptor signalling. Nature, 430, 257–263 (2004).PubMedCrossRefGoogle Scholar
  10. Biragyn, A., Ruffini, P. A., Leifer, C. A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A. K., Farber, J. M., Segal, D. M., Oppenheim, J. J., and Kwak, L. W., Toll-like receptor 4-dependent activation of dendritic cells by betadefensin 2. Science, 298, 1025–1029 (2002).PubMedCrossRefGoogle Scholar
  11. Boehm, U., Klamp, T., Groot, M., and Howard, J. C., Cellular responses to interferon-gamma. Annu. Rev. Immunol., 15, 749–795 (1997).PubMedCrossRefGoogle Scholar
  12. Boone, D. L., Turer, E. E., Lee, E. G., Ahmad, R. C., Wheeler, M. T., Tsui, C., Hurley, P., Chien, M., Chai, S., Hitotsumatsu, O., Mcnally, E., Pickart, C., and Ma, A., The ubiquitinmodifying enzyme A20 is required for termination of Tolllike receptor responses. Nat. Immunol., 5, 1052–1060 (2004).PubMedCrossRefGoogle Scholar
  13. Bowie, A., Kiss-Toth, E., Symons, J. A., Smith, G. L., Dower, S. K., and O’neill, L. A., A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc. Natl. Acad. Sci. USA, 97, 10162–10167 (2000).PubMedCrossRefGoogle Scholar
  14. Brint, E. K., Xu, D., Liu, H., Dunne, A., Mckenzie, A. N., O’neill, L. A., and Liew, F. Y., ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat. Immunol., 5, 373–379 (2004).PubMedCrossRefGoogle Scholar
  15. Broide, D. H., Immunostimulatory sequences of DNA and conjugates in the treatment of allergic rhinitis. Curr. Allergy Asthma Rep., 5, 182–185 (2005).PubMedCrossRefGoogle Scholar
  16. Burns, K., Clatworthy, J., Martin, L., Martinon, F., Plumpton, C., Maschera, B., Lewis, A., Ray, K., Tschopp, J., and Volpe, F., Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat. Cell Biol., 2, 346–351 (2000).PubMedCrossRefGoogle Scholar
  17. Carty, M., Goodbody, R., Schroder, M., Stack, J., Moynagh, P. N., and Bowie, A. G., The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat. Immunol., 7, 1074–1081 (2006).PubMedCrossRefGoogle Scholar
  18. Chang, Y. C., Madkan, V., Cook-Norris, R., Sra, K., and Tyring, S., Current and potential uses of imiquimod. South Med. J., 98, 914–920 (2005).PubMedCrossRefGoogle Scholar
  19. Chung, C. D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P., and Shuai, K., Specific inhibition of Stat3 signal transduction by PIAS3. Science, 278, 1803–1805 (1997).PubMedCrossRefGoogle Scholar
  20. Cluff, C. W., Baldridge, J. R., Stover, A. G., Evans, J. T., Johnson, D. A., Lacy, M. J., Clawson, V. G., Yorgensen, V. M., Johnson, C. L., Livesay, M. T., Hershberg, R. M., and Persing, D. H., Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect. Immun., 73, 3044–3052 (2005).PubMedCrossRefGoogle Scholar
  21. Dan, H. C., Sun, M., Kaneko, S., Feldman, R. I., Nicosia, S. V., Wang, H. G., Tsang, B. K., and Cheng, J. Q., Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J. Biol. Chem., 279, 5405–5412 (2004).PubMedCrossRefGoogle Scholar
  22. Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z. J., Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 103, 351–361 (2000).PubMedCrossRefGoogle Scholar
  23. Dieckmann, T., Withers-Ward, E. S., Jarosinski, M. A., Liu, C. F., Chen, I. S., and Feigon, J., Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. Nat. Struct. Biol., 5, 1042–1047 (1998).PubMedCrossRefGoogle Scholar
  24. Diehl, G. E., Yue, H. H., Hsieh, K., Kuang, A. A., Ho, M., Morici, L. A., Lenz, L. L., Cado, D., Riley, L. W., and Winoto, A., TRAIL-R as a negative regulator of innate immune cell responses. Immunity, 21, 877–889 (2004).PubMedCrossRefGoogle Scholar
  25. Divanovic, S., Trompette, A., Atabani, S. F., Madan, R., Golenbock, D. T., Visintin, A., Finberg, R. W., Tarakhovsky, A., Vogel, S. N., Belkaid, Y., Kurt-Jones, E. A., and Karp, C. L., Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol., 6, 571–578 (2005).PubMedCrossRefGoogle Scholar
  26. Evans, J. T., Cluff, C. W., Johnson, D. A., Lacy, M. J., Persing, D. H., and Baldridge, J. R., Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert. Rev. Vaccines, 2, 219–229 (2003).PubMedCrossRefGoogle Scholar
  27. Fritz, J. H., Ferrero, R. L., Philpott, D. J., and Girardin, S. E., Nod-like proteins in immunity, inflammation and disease. Nat. Immunol., 7, 1250–1257 (2006).PubMedCrossRefGoogle Scholar
  28. Gilchrist, M., Thorsson, V., Li, B., Rust, A. G., Korb, M., Roach, J. C., Kennedy, K., Hai, T., Bolouri, H., and Aderem, A., Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature, 441, 173–178 (2006).PubMedCrossRefGoogle Scholar
  29. Guillot, L., Balloy, V., Mccormack, F. X., Golenbock, D. T., Chignard, M., and Si-Tahar, M., Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J. Immunol., 168, 5989–5992 (2002).PubMedGoogle Scholar
  30. Halperin, S. A., Dobson, S., Mcneil, S., Langley, J. M., Smith, B., Mccall-Sani, R., Levitt, D., Nest, G. V., Gennevois, D., and Eiden, J. J., Comparison of the safety and immunogenicity of hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide and a licensed hepatitis B vaccine in healthy young adults. Vaccine, 24, 20–26 (2006).PubMedCrossRefGoogle Scholar
  31. Hardy, M. P., and O’neill, L. A., The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J. Biol. Chem., 279, 27699–27708 (2004).PubMedCrossRefGoogle Scholar
  32. Harmey, J. H., Bucana, C. D., Lu, W., Byrne, A. M., Mcdonnell, S., Lynch, C., Bouchier-Hayes, D., and Dong, Z., Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int. J. Cancer, 101, 415–422 (2002).PubMedCrossRefGoogle Scholar
  33. Harte, M. T., Haga, I. R., Maloney, G., Gray, P., Reading, P. C., Bartlett, N. W., Smith, G. L., Bowie, A., and O’neill, L. A., The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med., 197, 343–351 (2003).PubMedCrossRefGoogle Scholar
  34. Heyninck, K. and Beyaert, R., The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6. FEBS Lett., 442, 147–150 (1999).PubMedCrossRefGoogle Scholar
  35. Higgins, D., Marshall, J. D., Traquina, P., Van Nest, G., and Livingston, B. D., Immunostimulatory DNA as a vaccine adjuvant. Expert. Rev. Vaccines, 6, 747–759 (2007).PubMedCrossRefGoogle Scholar
  36. Hirotani, T., Lee, P. Y., Kuwata, H., Yamamoto, M., Matsumoto, M., Kawase, I., Akira, S., and Takeda, K., The nuclear IkappaB protein IkappaBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J. Immunol., 174, 3650–3657 (2005).PubMedGoogle Scholar
  37. Hoebe, K., Du, X., Georgel, P., Janssen, E., Tabeta, K., Kim, S. O., Goode, J., Lin, P., Mann, N., Mudd, S., Crozat, K., Sovath, S., Han, J., and Beutler, B., Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature, 424, 743–748 (2003a).PubMedCrossRefGoogle Scholar
  38. Hoebe, K., Janssen, E. M., Kim, S. O., Alexopoulou, L., Flavell, R. A., Han, J., and Beutler, B., Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol., 4, 1223–1229 (2003b).PubMedCrossRefGoogle Scholar
  39. Hoffman, E. S., Smith, R. E., and Renaud, R. C., Jr., From the analyst’s couch: TLR-targeted therapeutics. Nat. Rev. Drug Discov., 4, 879–880 (2005).PubMedCrossRefGoogle Scholar
  40. Honko, A. N., Sriranganathan, N., Lees, C. J., and Mizel, S. B., Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect Immun., 74, 1113–1120 (2006).PubMedCrossRefGoogle Scholar
  41. Horng, T., Barton, G. M., Flavell, R. A., and Medzhitov, R., The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature, 420, 329–333 (2002).PubMedCrossRefGoogle Scholar
  42. Hunter, R. L., Overview of vaccine adjuvants: present and future. Vaccine, 20Suppl 3, S7–12 (2002).PubMedCrossRefGoogle Scholar
  43. Ilvesaro, J. M., Merrell, M. A., Swain, T. M., Davidson, J., Zayzafoon, M., Harris, K. W., and Selander, K. S., Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate, 67, 774–781 (2007).PubMedCrossRefGoogle Scholar
  44. Inohara, Chamaillard, Mcdonald, C., and Nunez, G., NODLRR proteins: Role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem., 74, 355–383 (2005).PubMedCrossRefGoogle Scholar
  45. Ishii, K. J. and Akira, S., Toll or toll-free adjuvant path toward the optimal vaccine development. J. Clin. Immunol., 27, 363–371 (2007).PubMedCrossRefGoogle Scholar
  46. Iwami, K. I., Matsuguchi, T., Masuda, A., Kikuchi, T., Musikacharoen, T., and Yoshikai, Y., Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J. Immunol., 165, 6682–6686 (2000).PubMedGoogle Scholar
  47. Janssens, S., Burns, K., Tschopp, J., and Beyaert, R., Regulation of interleukin-1- and lipopolysaccharide-in duced NF-kappaB activation by alternative splicing of MyD88. Curr. Biol., 12, 467–471 (2002).PubMedCrossRefGoogle Scholar
  48. Johnson, G. B., Brunn, G. J., Kodaira, Y., and Platt, J. L., Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol., 168, 5233–5239 (2002).PubMedGoogle Scholar
  49. Kanayama, A., Seth, R. B., Sun, L., Ea, C. K., Hong, M., Shaito, A., Chiu, Y. H., Deng, L., and Chen, Z. J., TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol. Cell, 15, 535–548 (2004).PubMedCrossRefGoogle Scholar
  50. Kanzler, H., Barrat, F. J., Hessel, E. M., and Coffman, R. L., Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat. Med., 13, 552–559 (2007).PubMedCrossRefGoogle Scholar
  51. Kaplan, B. I. and Tipirneni, P., Lessons for the future: a review of sepsis past and present. IDrugs, 10, 264–269 (2007).PubMedGoogle Scholar
  52. Kawagoe, T., Sato, S., Matsushita, K., Kato, H., Matsui, K., Kumagai, Y., Saitoh, T., Kawai, T., Takeuchi, O., and Akira, S., Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol., 9, 684–691 (2008).PubMedCrossRefGoogle Scholar
  53. Kawai, T. and Akira, S., TLR signaling. Semin. Immunol., 19, 24–32 (2007).PubMedCrossRefGoogle Scholar
  54. Kawai, T., Sato, S., Ishii, K. J., Coban, C., Hemmi, H., Yamamoto, M., Terai, K., Matsuda, M., Inoue, J., Uematsu, S., Takeuchi, O., and Akira, S., Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol., 5, 1061–1068 (2004).PubMedCrossRefGoogle Scholar
  55. Kayagaki, N., Phung, Q., Chan, S., Chaudhari, R., Quan, C., O’rourke, K. M., Eby, M., Pietras, E., Cheng, G., Bazan, J. F., Zhang, Z., Arnott, D., and Dixit, V. M., DUBA: A deubiquitinase that regulates type I interferon production. Science, 318, 1628–1632 (2007).PubMedCrossRefGoogle Scholar
  56. Kobayashi, K., Hernandez, L. D., Galan, J. E., Janeway, C. A., Jr., Medzhitov, R., and Flavell, R. A., IRAK-M is a negative regulator of Toll-like receptor signaling. Cell, 110, 191–202 (2002).PubMedCrossRefGoogle Scholar
  57. Kol, A., Lichtman, A. H., Finberg, R. W., Libby, P., and Kurt-Jones, E. A., Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J. Immunol., 164, 13–17 (2000).PubMedGoogle Scholar
  58. Krieg, A. M., Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov., 5, 471–484 (2006).PubMedCrossRefGoogle Scholar
  59. Krishnan, J., Selvarajoo, K., Tsuchiya, M., Lee, G., and Choi, S., Toll-like receptor signal transduction. Exp. Mol. Med., 39, 421–438 (2007).PubMedGoogle Scholar
  60. Kuwata, H., Watanabe, Y., Miyoshi, H., Yamamoto, M., Kaisho, T., Takeda, K., and Akira, S., IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-alpha production in macrophages. Blood, 102, 4123–4129 (2003).PubMedCrossRefGoogle Scholar
  61. Latz, E., Franko, J., Golenbock, D. T., and Schreiber, J. R., Haemophilus influenzae type b-outer membrane protein complex glycoconjugate vaccine induces cytokine production by engaging human toll-like receptor 2 (TLR2) and requires the presence of TLR2 for optimal immunogenicity. J. Immunol., 172, 2431–2438 (2004).PubMedGoogle Scholar
  62. Lebouder, E., Rey-Nores, J. E., Rushmere, N. K., Grigorov, M., Lawn, S. D., Affolter, M., Griffin, G. E., Ferrara, P., Schiffrin, E. J., Morgan, B. P., and Labeta, M. O., Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J. Immunol., 171, 6680–6689 (2003).PubMedGoogle Scholar
  63. Lee, E. G., Boone, D. L., Chai, S., Libby, S. L., Chien, M., Lodolce, J. P., and Ma, A., Failure to regulate TNFinduced NF-kappaB and cell death responses in A20-deficient mice. Science, 289, 2350–2354 (2000).PubMedCrossRefGoogle Scholar
  64. Lee, M. S. and Kim, Y. J., Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem., 76, 447–480 (2007).PubMedCrossRefGoogle Scholar
  65. Liu, B., Liao, J., Rao, X., Kushner, S. A., Chung, C. D., Chang, D. D., and Shuai, K., Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad Sci. USA, 95, 10626–10631 (1998).PubMedCrossRefGoogle Scholar
  66. Liu, B., Mink, S., Wong, K. A., Stein, N., Getman, C., Dempsey, P. W., Wu, H., and Shuai, K., PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat. Immunol., 5, 891–898 (2004).PubMedCrossRefGoogle Scholar
  67. Liu, B., Yang, Y., Chernishof, V., Loo, R. R., Jang, H., Tahk, S., Yang, R., Mink, S., Shultz, D., Bellone, C. J., Loo, J. A., and Shuai, K., Proinflammatory stimuli induce IKKalphamediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell, 129, 903–914 (2007).PubMedCrossRefGoogle Scholar
  68. Mansell, A., Smith, R., Doyle, S. L., Gray, P., Fenner, J. E., Crack, P. J., Nicholson, S. E., Hilton, D. J., O’neill, L. A., and Hertzog, P. J., Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat. Immunol., 7, 148–155 (2006).PubMedCrossRefGoogle Scholar
  69. Masihi, K. N., Lange, W., Brehmer, W., and Ribi, E., Immunobiological activities of nontoxic lipid A: enhancement of nonspecific resistance in combination with trehalose dimycolate against viral infection and adjuvant effects. Int. J. Immunopharmacol, 8, 339–345 (1986).PubMedCrossRefGoogle Scholar
  70. Mcguirk, P., Mccann, C., and Mills, K. H., Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J. Exp. Med., 195, 221–231 (2002).PubMedCrossRefGoogle Scholar
  71. Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., and Janeway, C. A., Jr., MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell, 2, 253–258 (1998).PubMedCrossRefGoogle Scholar
  72. Mellor, A. L., Baban, B., Chandler, P. R., Manlapat, A., Kahler, D. J., and Munn, D. H., Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J. Immunol., 175, 5601–5605 (2005).PubMedGoogle Scholar
  73. Merrell, M. A., Ilvesaro, J. M., Lehtonen, N., Sorsa, T., Gehrs, B., Rosenthal, E., Chen, D., Shackley, B., Harris, K. W., and Selander, K. S., Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol. Cancer Res., 4, 437–447 (2006).PubMedCrossRefGoogle Scholar
  74. Meyer, T. and Stockfleth, E., Clinical investigations of Tolllike receptor agonists. Expert. Opin. Investig. Drugs, 17, 1051–1065 (2008).PubMedCrossRefGoogle Scholar
  75. Miyake, K., Yamashita, Y., Hitoshi, Y., Takatsu, K., and Kimoto, M., Murine B cell proliferation and protection from apoptosis with an antibody against a 105-kD molecule: unresponsiveness of X-linked immunodeficient B cells. J. Exp. Med., 180, 1217–1224 (1994).PubMedCrossRefGoogle Scholar
  76. Motoyama, M., Yamazaki, S., Eto-Kimura, A., Takeshige, K., and Muta, T., Positive and negative regulation of nuclear factor-kappaB-mediated transcription by IkappaBzeta, an inducible nuclear protein. J. Biol. Chem., 280, 7444–7451 (2005).PubMedCrossRefGoogle Scholar
  77. Mullen, G. E., Giersing, B. K., Ajose-Popoola, O., Davis, H. L., Kothe, C., Zhou, H., Aebig, J., Dobrescu, G., Saul, A., and Long, C. A., Enhancement of functional antibody responses to AMA1-C1/Alhydrogel, a Plasmodium falciparum malaria vaccine, with CpG oligodeoxynucleotide. Vaccine, 24, 2497–2505 (2006).PubMedCrossRefGoogle Scholar
  78. Negishi, H., Ohba, Y., Yanai, H., Takaoka, A., Honma, K., Yui, K., Matsuyama, T., Taniguchi, T., and Honda, K., Negative regulation of Toll-like-receptor signaling by IRF-4. Proc. Natl. Acad. Sci. USA, 102, 15989–15994 (2005).PubMedCrossRefGoogle Scholar
  79. Okamoto, M., Oshikawa, T., Tano, T., Ahmed, S. U., Kan, S., Sasai, A., Akashi, S., Miyake, K., Moriya, Y., Ryoma, Y., Saito, M., and Sato, M., Mechanism of anticancer host response induced by OK-432, a streptococcal preparation, mediated by phagocytosis and Toll-like receptor 4 signaling. J. Immunother, 29, 78–86 (2006).PubMedCrossRefGoogle Scholar
  80. Okamura, Y., Watari, M., Jerud, E. S., Young, D. W., Ishizaka, S. T., Rose, J., Chow, J. C., and Strauss, J. F., 3rd The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem., 276, 10229–10233 (2001).PubMedCrossRefGoogle Scholar
  81. Ondiveeran, H. K., and Fox-Robichaud, A., Drug evaluation: E-5564. IDrugs, 7, 582–590 (2004).PubMedGoogle Scholar
  82. Opipari, A. W., Jr., Boguski, M. S., and Dixit, V. M., The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J. Biol. Chem., 265, 14705–14708 (1990).PubMedGoogle Scholar
  83. Palsson-Mcdermott, E. M., Doyle, S. L., Mcgettrick, A. F., Hardy, M., Husebye, H., Banahan, K., Gong, M., Golenbock, D., Espevik, T., and O’neill, L. A., TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat. Immunol., 10, 579–586 (2009).PubMedCrossRefGoogle Scholar
  84. Park, J. S., Svetkauskaite, D., He, Q., Kim, J. Y., Strassheim, D., Ishizaka, A., and Abraham, E., Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem., 279, 7370–7377 (2004).PubMedCrossRefGoogle Scholar
  85. Rappuoli, R., Bridging the knowledge gaps in vaccine design. Nat. Biotechnol., 25, 1361–1366 (2007).PubMedCrossRefGoogle Scholar
  86. Robinson, R. A., Devita, V. T., Levy, H. B., Baron, S., Hubbard, S. P., and Levine, A. S., A phase I-II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. J. Natl. Cancer Inst., 57, 599–602 (1976).PubMedGoogle Scholar
  87. Rottapel, R., Ilangumaran, S., Neale, C., La Rose, J., Ho, J. M., Nguyen, M. H., Barber, D., Dubreuil, P., and De Sepulveda, P., The tumor suppressor activity of SOCS-1. Oncogene, 21, 4351–4362 (2002).PubMedCrossRefGoogle Scholar
  88. Ryo, A., Liou, Y. C., Lu, K. P., and Wulf, G., Prolyl isomerase Pin1: A catalyst for oncogenesis and a potential therapeutic target in cancer. J. Cell Sci., 116, 773–783 (2003a).PubMedCrossRefGoogle Scholar
  89. Ryo, A., Liou, Y. C., Wulf, G., Nakamura, M., Lee, S. W., and Lu, K. P., PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell Biol., 22, 5281–5295 (2002).PubMedCrossRefGoogle Scholar
  90. Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C., and Lu, K. P., Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat. Cell Biol., 3, 793–801 (2001).PubMedCrossRefGoogle Scholar
  91. Ryo, A., Suizu, F., Yoshida, Y., Perrem, K., Liou, Y. C., Wulf, G., Rottapel, R., Yamaoka, S., and Lu, K. P., Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell, 12, 1413–1426 (2003b).PubMedCrossRefGoogle Scholar
  92. Saitoh, T., Tun-Kyi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S., Yamamoto, N., Lu, K. P., and Yamaoka, S., Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat. Immunol., 7, 598–605 (2006).PubMedCrossRefGoogle Scholar
  93. Schroder, N. W. and Schumann, R. R., Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis., 5, 156–164 (2005).PubMedGoogle Scholar
  94. Seiwert, S. D., Andrews, S. W., Jiang, Y., Serebryany, V., Tan, H., Kossen, K., Rajagopalan, P. T., Misialek, S., Stevens, S. K., Stoycheva, A., Hong, J., Lim, S. R., Qin, X., Rieger, R., Condroski, K. R., Zhang, H., Do, M. G., Lemieux, C., Hingorani, G. P., Hartley, D. P., Josey, J. A., Pan, L., Beigelman, L., and Blatt, L. M., Preclinical characteristics of the hepatitis C virus NS3/4A protease inhibitor ITMN-191 (R7227). Antimicrob. Agents Chemother., 52, 4432–4441 (2008).PubMedCrossRefGoogle Scholar
  95. Sharrocks, A. D., PIAS proteins and transcriptional regulation—more than just SUMO E3 ligases? Genes Dev., 20, 754–758 (2006).PubMedCrossRefGoogle Scholar
  96. Shi, M., Deng, W., Bi, E., Mao, K., Ji, Y., Lin, G., Wu, X., Tao, Z., Li, Z., Cai, X., Sun, S., Xiang, C., and Sun, B., TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat. Immunol., 9, 369–377 (2008).PubMedCrossRefGoogle Scholar
  97. Singh-Jasuja, H., Scherer, H. U., Hilf, N., Arnold-Schild, D., Rammensee, H. G., Toes, R. E., and Schild, H., The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur. J. Immunol., 30, 2211–2215 (2000).PubMedGoogle Scholar
  98. Smiley, S. T., King, J. A., and Hancock, W. W., Fibrinogen stimulates macrophage chemokine secretion through tolllike receptor 4. J. Immunol., 167, 2887–2894 (2001).PubMedGoogle Scholar
  99. Stack, J., Haga, I. R., Schroder, M., Bartlett, N. W., Maloney, G., Reading, P. C., Fitzgerald, K. A., Smith, G. L., and Bowie, A. G., Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med., 201, 1007–1018 (2005).PubMedCrossRefGoogle Scholar
  100. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D., How cells respond to interferons. Annu. Rev. Biochem., 67, 227–264 (1998).PubMedCrossRefGoogle Scholar
  101. Uematsu, S., Sato, S., Yamamoto, M., Hirotani, T., Kato, H., Takeshita, F., Matsuda, M., Coban, C., Ishii, K. J., Kawai, T., Takeuchi, O., and Akira, S., Interleukin-1 receptorassociated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J. Exp. Med., 201, 915–923 (2005).PubMedCrossRefGoogle Scholar
  102. Vollmer, J., TLR9 in health and disease. Int. Rev. Immunol., 25, 155–181 (2006).PubMedCrossRefGoogle Scholar
  103. Wang, J. H., Manning, B. J., Wu, Q. D., Blankson, S., Bouchier-Hayes, D., and Redmond, H. P., Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J. Immunol., 170, 795–804 (2003).PubMedGoogle Scholar
  104. Whitmore, M. M., Iparraguirre, A., Kubelka, L., Weninger, W., Hai, T., and Williams, B. R., Negative regulation of TLR-signaling pathways by activating transcription factor-3. J. Immunol., 179, 3622–3630 (2007).PubMedGoogle Scholar
  105. Wingender, G., Garbi, N., Schumak, B., Jungerkes, F., Endl, E., Von Bubnoff, D., Steitz, J., Striegler, J., Moldenhauer, G., Tuting, T., Heit, A., Huster, K. M., Takikawa, O., Akira, S., Busch, D. H., Wagner, H., Hammerling, G. J., Knolle, P. A., and Limmer, A., Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur. J. Immunol., 36, 12–20 (2006).PubMedCrossRefGoogle Scholar
  106. Xiang, A. X., Webber, S. E., Kerr, B. M., Rueden, E. J., Lennox, J. R., Haley, G. J., Wang, T., Ng, J. S., Herbert, M. R., Clark, D. L., Banh, V. N., Li, W., Fletcher, S. P., Steffy, K. R., Bartkowski, D. M., Kirkovsky, L. I., Bauman, L. A., and Averett, D. R., Discovery of ANA975: an oral prodrug of the TLR-7 agonist isatoribine. Nucleosides Nucleotides Nucleic Acids, 26, 635–640 (2007).PubMedCrossRefGoogle Scholar
  107. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S., Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 301, 640–643 (2003a).PubMedCrossRefGoogle Scholar
  108. Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K., and Akira, S., Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature, 420, 324–329 (2002).PubMedCrossRefGoogle Scholar
  109. Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., Takeda, K., and Akira, S., TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol., 4, 1144–1150 (2003b).PubMedCrossRefGoogle Scholar
  110. Yamazaki, S., Muta, T., and Takeshige, K., A novel IkappaB protein, IkappaB-zeta, induced by proinflammatory stimuli, negatively regulates nuclear factor-kappaB in the nuclei. J. Biol. Chem., 276, 27657–27662 (2001).PubMedCrossRefGoogle Scholar
  111. Yoder, A., Wang, X., Ma, Y., Philipp, M. T., Heilbrun, M., Weis, J. H., Kirschning, C. J., Wooten, R. M., and Weis, J. J., Tripalmitoyl-S-glyceryl-cysteine-dependent OspA vaccination of toll-like receptor 2-deficient mice results in effective protection from Borrelia burgdorferi challenge. Infect. Immun., 71, 3894–3900 (2003).PubMedCrossRefGoogle Scholar
  112. Yoshida, H., Jono, H., Kai, H., and Li, J. D., The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J. Biol. Chem., 280, 41111–41121 (2005).PubMedCrossRefGoogle Scholar
  113. Yoshikawa, H., Matsubara, K., Qian, G. S., Jackson, P., Groopman, J. D., Manning, J. E., Harris, C. C., and Herman, J. G., SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat. Genet., 28, 29–35 (2001).PubMedCrossRefGoogle Scholar
  114. Yu, D., Wang, D., Zhu, F. G., Bhagat, L., Dai, M., Kandimalla, E. R., and Agrawal, S., Modifications Incorporated in CpG Motifs of Oligodeoxynucleotides Lead to Antagonist Activity of Toll-like Receptors 7 and 9. J. Med. Chem., 52, 5108–5114 (2009).CrossRefGoogle Scholar
  115. Yuan, Z. Q., Feldman, R. I., Sussman, G. E., Coppola, D., Nicosia, S. V., and Cheng, J. Q., AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J. Biol. Chem., 278, 23432–23440 (2003).PubMedCrossRefGoogle Scholar
  116. Zhang, G. and Ghosh, S., Negative regulation of toll-like receptor-mediated signaling by Tollip. J. Biol. Chem., 277, 7059–7065 (2002).PubMedCrossRefGoogle Scholar
  117. Zhang, X., Meng, Z., Qiu, S., Xu, Y., Yang, D., Schlaak, J. F., Roggendorf, M., and Lu, M., Lipopolysaccharide induced innate immune responses in primary hepatocytes downregulates woodchuck hepatitis virus replication via interferon-independent pathways. Cell Microbiol., 11, 1624–1637 (2009).PubMedCrossRefGoogle Scholar
  118. Zhu, X., Chang, M. S., Hsueh, R. C., Taussig, R., Smith, K. D., Simon, M. I., and Choi, S., Dual ligand stimulation of RAW 264.7 cells uncovers feedback mechanisms that regulate TLR-mediated gene expression. J. Immunol., 177, 4299–4310 (2006).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2009

Authors and Affiliations

  • Jayalakshmi Krishnan
    • 1
  • Gwang Lee
    • 1
    • 2
  • Sangdun Choi
    • 1
  1. 1.Department of Molecular Science and TechnologyAjou UniversitySuwonKorea
  2. 2.Institute for Medical ScienceAjou University School of MedicineSuwonKorea

Personalised recommendations