Advertisement

Archives of Pharmacal Research

, Volume 32, Issue 9, pp 1245–1251 | Cite as

Acetylcholinesterase inhibitive activity-guided isolation of two new alkaloids from seeds of Peganum nigellastrum Bunge by an in vitro TLC- bioautographic assay

  • Xi-yuan Zheng
  • Zi-jia Zhang
  • Gui-xin Chou
  • Tao Wu
  • Xue-mei Cheng
  • Chang-hong Wang
  • Zheng-tao Wang
Research Articles Drug Discovery and Development

Abstract

Acetylcholinesterase inhibitors (AChEIs) currently form the basis of the newest drugs available for the treatment of Alzheimer’s disease. For the aim of screening effective AChEIs, the methanol extracts of the seeds of genus Peganum were found to show significant inhibitory activity of acetylcholinesterase enzyme (AChE) using an in vitro TLC-bioautographic assay. In further studies to seed of P. nigellastrum Bunge, activity-guided fractionation led to the isolation of two new alkaloids nigellastrine I (9) and nigellastrine II (10), and along with eight known alkaloids, vasicinone (1), vasicine (2), harmine (3), deoxyvasicinone (4), deoxyvasicine (5), harmaline (6), harmol (7), harman (8), in which harmol and harman were first isolated from species P. nigellastrum Bunge. As active constituents, all compounds showed good inhibitory activities against AChE. The results of in vitro semi-quality TLC-bioautographic assay showed that harmine, harmaline and harmol displayed a similar AChE inhibitive activities comparing to galanthamine. These results indicated that these alkaloids in P. nigellastrum Bunge could be a potent class of AChEIs.

Key words

Peganum nigellastrum Bunge Acetylcholinesterase TLC-bioautographic assay Alzheimer’s disease Alkaloid Nigellastrine I Nigellastrine II 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarons, D. H., Rossi, G. V., and Orzechowski, R. F., Cardiovascular actions of three harmala alkaloids: harmine, harmaline, and harmalol. J. Pharm. Sci., 66, 1244–1248 (1977)PubMedCrossRefGoogle Scholar
  2. Ahmad, A., Khan, K. A., Sultana, S., Siddiqui, B. S., Begum, S., Faizi, S., and Siddiqui, S., Study of the in vitro antimicrobial activity of harmine, harmaline and their derivatives. J. Ethnopharmacol., 35, 289–294 (1992)PubMedCrossRefGoogle Scholar
  3. Airaksinen, M. M. and Kari, I., β-carbolines, psychoactive compounds in the mammalian body. Part I: Occurrence, origin and metabolism. Med. Biol., 59(1), 21–34 (1981)PubMedGoogle Scholar
  4. Becker, R., Giacobini, E., Elble, R., Mcllhany, M., and Sherman, K., Potential pharmacotherapy of Alzheimer disease. A comparison of various forms of physostigmine administration. Acta Neurol. Scand. Suppl., 116,19–32 (1988)PubMedCrossRefGoogle Scholar
  5. Blennow, K., de Leon, M. J., and Zetterberg, H., Alzheimer’s disease. Lancet, 368, 387–403 (2006)PubMedCrossRefGoogle Scholar
  6. Bores, G. M., Huger, F. P., Petko, W., Mutalib, A. E., Camacho, F., Rush, D. K., Selk, D. E., Wolf, V., Kosley, R. W., Davis, L., and Vargas, H. M., Pharmacological evaluation of novel Alzheimer’s disease therapeutics: acetylcholinesterase inhibitors related to galanthamine. J. Pharmacol. Exp. Ther., 277, 728–738 (1996)PubMedGoogle Scholar
  7. Di Giorgio, C., Delmas, F., Ollivier, E., Elias, R., Balansard, G., and Timon-David, P., In vitro activity of the β-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum. Exp. Parasitol., 106, 67–74 (2004)PubMedCrossRefGoogle Scholar
  8. Duan, J. A., Che, C. T., Zhou, R. H., Zhao, S. X., and Wang, M. S., Studies on the chemical constituents of Peganum multisectum Maxim II. Flavonoids and alkaloids from aerial part of plant. J. Chin. Pharm. Univ., 29, 100–104 (1998)Google Scholar
  9. Duan, J. A., Zhou, R. H., Che, C. T., Wang, M. S., and Zhao, S. X., Studies on the chemicaI constituents of Peganum multisectum Maxim I. The alkaloids from seeds and antitumour activity. J. Chin. Pharm. Univ., 29, 21–23 (1998)Google Scholar
  10. Forette, F., Anand, R., and Gharabawi, G., A phase II study in patients with Alzheimer’s disease to assess the preliminary efficacy and maximum tolerated dose of rivastigmine (ExXelon). Eur. J. Neurol., 6, 423–429 (1999)PubMedCrossRefGoogle Scholar
  11. Francis, P. T., Palmer, A. M., Snape, M., and Wilcock, G. K., The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry., 66, 137–147 (1999)PubMedCrossRefGoogle Scholar
  12. Fulton, B. and Benfield, P., Galanthamine. Drugs Aging, 9, 60–65 (1996)PubMedCrossRefGoogle Scholar
  13. Glennon, R. A., Dukat, M., Grella, B., Hong, S., Costantino, L., Teitler, M., Smith, C., Egan, C., Davis, K., and Mattson, M. V., Binding of b-carbolines and related agents at serotonin (5-HT(2) and 5-HT(1A)), dopamine (D(2)) and benzodiazepine receptors. Drug Alcohol. Depend., 60, 121–132 (2000)PubMedCrossRefGoogle Scholar
  14. Husbands, S. M., Glennon, R. A., Gorgerat, S., Gough, R., Tyacke, R., Crosby, J., Nutt, D. J., Lewis, J. W., and Hudson, A. L., β-carboline binding to imidazoline receptors. Drug Alcohol. Depend., 64, 203–208 (2001)PubMedCrossRefGoogle Scholar
  15. Kim, H., Sablin, S. O., and Ramsay, R. R., Inhibition of monoamine oxidase A by b-carboline derivatives. Arch. Biochem. Biophys., 337, 137–142 (1997)PubMedCrossRefGoogle Scholar
  16. Lamchouri, F., Settaf, A., Cherrah, Y., Hassar, M., Zemzami, M., Atif, N., Nadori, E. B., Zaid, A., and Lyoussi, B., In vitro cell-toxicity of Peganum harmala alkaloids on cancerous cell-lines. Fitoterapia 71, 50–54 (2000)PubMedCrossRefGoogle Scholar
  17. Lamchouri, F., Settaf, A., Cherrah, Y., Zemzami, M., Lyoussi, B., Zaid, A., Atif, N., and Hassar, M., Antitumour principles from Peganum harmala. Therapie. Paris., 54, 753–758 (1999)PubMedGoogle Scholar
  18. Lutes, J., Lorden, J. F., Beales, M., and Oltmans, G. A., Tolerance to the tremorogenic effects of harmaline: evidence for altered olivo-cerebellar function. Neuropharmacol., 27, 849–855 (1988)CrossRefGoogle Scholar
  19. Ma, J. and Wang, X. L., The species and distribution of genus Peganum in the desert area of China. J. Desert Res., 18, 131–136 (1998)Google Scholar
  20. Ma, J., and Li, Y. J., A resistant plant to desert: Peganum harmala. Plant Resources 1, 3–4 (1996)Google Scholar
  21. Marston, A., Kissling, J., and Hostettmann, K., A Rapid TLC Bioautographic Method for the Detection of Acetylcholinesterase and Butyrylcholinesterase Inhibitors in Plants. Phytochem. Anal., 13, 51–54 (2002)PubMedCrossRefGoogle Scholar
  22. Pfau, W. and Skog, K., Exposure to b-carbolines norharman and harman. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 802, 115–126 (2004)PubMedCrossRefGoogle Scholar
  23. Pharmacopoeia Commission, Ministry of Pubic Health, 1998. Standard of Uygur drug, Drug Standard of Ministry of Health of the people’s republic of China, Technology & Public Health Press, Xinjiang, pp. 80 (1998)Google Scholar
  24. Schwarz, M. J., Houghton, P. J., Rose, S., Jenner, P., and Lees, A. D., Activities of extract and constituents of Banisteriopsis caapi relevant to parkinsonism. Pharmacol. Biochem. Behav., 75, 627–633 (2003)PubMedCrossRefGoogle Scholar
  25. Sobhani, A. M., Ebrahimi, S. A., Hoormand, M., Rahbar, N., and Mahmoudian, M., Cytotoxicity of Peganum harmala L. seeds extract and its relationship with contents of β-carboline alkaloids. J. Iran. Un.i Med. Sci., 8, 432–438 (2002)Google Scholar
  26. Wang, C. H., Liu, J., Zheng, L. M., Lin, Y. M., Zou, X. G., Chen, M., and Sun, D. J., Analysis of harmine and harmaline of Peganum harmala in different parts and different localities. Chin. Pharm. J., 37, 211–215 (2002)Google Scholar
  27. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., and DeLong, M. R., Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science, 215, 1237–1239 (1982)PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2009

Authors and Affiliations

  • Xi-yuan Zheng
    • 1
    • 2
    • 3
  • Zi-jia Zhang
    • 1
    • 2
    • 3
  • Gui-xin Chou
    • 1
    • 2
    • 3
  • Tao Wu
    • 1
    • 2
    • 3
  • Xue-mei Cheng
    • 1
    • 2
    • 3
  • Chang-hong Wang
    • 1
    • 2
    • 3
    • 4
  • Zheng-tao Wang
    • 1
    • 2
    • 3
    • 4
  1. 1.The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese MedicinesInstitute of ChineseShanghaiChina
  2. 2.Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
  3. 3.Shanghai R&D Centre for Standardization of Chinese MedicinesShanghaiChina
  4. 4.The Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina

Personalised recommendations