Archives of Pharmacal Research

, Volume 32, Issue 9, pp 1191–1200 | Cite as

Analgesic, antipyretic, anti-inflammatory and toxic effects of andrographolide derivatives in experimental animals

  • Supawadee Suebsasana
  • Panicha Pongnaratorn
  • Jintana Sattayasai
  • Tarinee Arkaravichien
  • Siriporn Tiamkao
  • Chantana Aromdee
Research Articles Drug Design


Andrographolide (1) and 14-deoxy-11,12-didehydroandrographolide (2) are active constituents of Andrographis paniculata (Burm. f.), family Acanthaceae. A. paniculata extracts are reported to have antiviral, antipyretic, immunostimulant and anticancer activities. In this study, 1 and its 14-acetyl- (4) and 3,19-isopropylidenyl- (3) derivatives, as well as 2 and its 3,19-dipalmitoyl-derivative (5), were intraperitoneally tested for their analgesic, antipyretic, anti-inflammatory and acute toxicity effects in animal models. Analgesic effects were tested in mice using hot plate and writhing tests to distinguish the central and peripheral effects, respectively. The results showed that, at 4 mg/kg, all tested substances have significant analgesic effects, and the highest potency was seen with 3, 4 and 5. Increasing the dose of 3 and 5 to 8 mg/kg did not increase the analgesic effect. In the writhing test, 3 and 5, but not 1, showed significant results. In a baker’s yeast-induced fever model, 3 and 5 significantly reduced rats’ rectal temperature (p < 0.05). In a carrageenan-induced inflammation model, 1, 3 and 5 significantly reduced rats’ paw volume. Doses of 3 and 5 up to 100 mg/kg did not show any serious toxic effects. From this study, 3 and 5 are the most interesting derivatives, showing much greater potency than their parent compounds. These could be further developed as analgesic, antipyretic and anti-inflammatory agents, without any serious toxicity.

Key words

Andrographolide derivatives Antipyretic Analgesic Anti-inflammatory Acute toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basak, A., Cooper, S., Roberge, A. G., Banik, U. K., Chretien, M., and Seidah, N. G. Inhibition of proprotein convertases-1, -7 and furin by diterpines ofAndrographis paniculata and their succinoyl esters. Biochem. J. 338, 107–113 (1999).PubMedCrossRefGoogle Scholar
  2. Brochet, D., Micó, J. A., Martin, P., and Simon, P., Antinociceptive activity of beta-adrenoceptor agonists in the hot plate test in mice. Psychopharmacology 88, 527–528 (1986).PubMedCrossRefGoogle Scholar
  3. Chang, R. S., Ding, L., Chen, G. Q., Pan, Q. C., Zhao, Z. L., and Smith, K. M., Dehydroandrographolide succinic acid monoester as an inhibitor against the human immunodeficiency virus. Proc. Soc. Exp. Biol. Med., 197, 59–66 (1991).PubMedGoogle Scholar
  4. Cui, L., Qiu, F., and Yao, X., Isolation and identification of seven glucuronide conjugates of andrographolide in human urine. Drug Metab. Dispos., 33, 555–562 (2005).PubMedCrossRefGoogle Scholar
  5. Deng, W. L., Nie, R. J., and Liu, J. Y., Comparison of pharmacological effect of four andrographolides. Yaoxue Tongbao, 17, 195–198 (1982).Google Scholar
  6. Fujita, T., Fujitani, R., Takeda, Y., Takaishi, Y., Yamada, T., Kido, M., and Miura, I., On the triterpenoids of Andrographis paniculata: X-ray crystallographic analysis of andrographolide and structure determination of new minor diterpenoids. Chem. Pharm. Bull., 32, 2117–2125 (1984).Google Scholar
  7. Ganesh, T., Improved biochemical strategies for targeted delivery of taxoids. Bioorg. Med. Chem. Lett., 15, 3597–3623 (2007).CrossRefGoogle Scholar
  8. Goldstein, D., Gofrit, O., Nyska, A., and Benita, S., Anti-HER2 cationic immunoemulsion as a potential targeted drug delivery system for the treatment of prostate cancer. Cancer Res., 67, 269–275 (2007).PubMedCrossRefGoogle Scholar
  9. Han, G. Du, G.-J., and Xu, Q.-T., Yang, S.-S., Studies of andrographolide maleate monoester and its antipyretic and antiinflammatory activities. Zhongguo Yaoxue Zazhi, 40, 628–631(2005).Google Scholar
  10. He, X., Li, J., Gao, H., Qiu, F., Hu, K. Cui, X., and Yao, X., Six new andrographolide metabolites in rats. Chem. Pharm. Bull., 15, 586–589 (2003).CrossRefGoogle Scholar
  11. Heiati, H., Tawashi, R., Shivers, R. R., and Phillips, N. C., Solid lipid nanoparticles as drug carriers. Incorporation and retention of the lipophilic prodrug 3-azido-3-deoxythymidine palmitate Int. J. Pharm., 146, 123–131 (1997).CrossRefGoogle Scholar
  12. Iruretagoyena, M. I., Tobar, J. A., Gonzalez, P.A., Sepulveda, S. E., Figueroa, C. A., Burgos, R. A. et al., Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in mouses. J. Pharmacol. Exp. Ther., 312, 366–372 (2005).PubMedCrossRefGoogle Scholar
  13. Jada, S. R., Subur G.S., Mathew, C., Hamzah, A. S., Lajis, N. H., Saad, M. S. et. al., Semisynthesis and in vitro anticancer activities and andrographolide analogues Phytochem., 68, 904–12 (2007).CrossRefGoogle Scholar
  14. Kumar, V., Abbas, A. K., Fausto N. (Eds.), Robbins and Cotran Pathologic Basis of Disease, 7th ed. Elsevier Saunders: Philadelphia, (2005).Google Scholar
  15. Lomlim, L., Jirayupong, N., and Plubrukarn, A., Heat-accelerated degradation of solid-state andrographolide. Chem. Pharm. Bull. 51, 24–26 (2003).PubMedCrossRefGoogle Scholar
  16. Madav, S., Tripathi, C., Tandan, S. K., and Mishra, S., Analgesic, antipyretic, and antiulcerogenic effects of andrographolide. Ind. J. Pharm. Sci. 57, 121–125 (1995).Google Scholar
  17. Madav, S., Tandon, S. K., Lal, J., and Tripathi, C., Anti-inflammatory of andrographolide. Fitoterapia, 67, 452–458 (1996).Google Scholar
  18. Marsh, D. J., Miura, G. I., Yagaloff, K. A., Schwartz, M. W., Barsh, G. S., and Palmiter, R., Effects of neuropeptide Y deficiency on hypothalamic agouti-related protein expression and responsiveness to melanocortin analogues. Brain Res., 848, 66–77 (1999).PubMedCrossRefGoogle Scholar
  19. Nakano, M., Denda, N., Matsumoto, M., Kawamura, M., Kawakubo, Y., Hatanaka, K. et al., Interaction between cyclooxygenase (COX)-1- and COX-2-products modulates COX-2 expression in the late phase of acute inflammation. Eur. J. Pharmacol., 559, 210–218 (2007).PubMedCrossRefGoogle Scholar
  20. Nanduri, S., Nyavanandi, V. K. Thunuguntla, S. S. R. et al., Synthesis and structure-activity relationships of andrographolide analogues as novel cytotoxicagents. Bioorg. Med. Chem. Lett., 14, 4711–4717 (2004).PubMedCrossRefGoogle Scholar
  21. Nasrallah H. A. et al, Efficacy and safety of three doses of paliperidone palmitate, an investigational long acting injectable antipsychotic, in schizophrenia. APA Meeting; Abstract NR4-036 (2008).Google Scholar
  22. Panossian, A., Hovhannisyan, A., Mamikonyan, G., Abrahamian, H., Hambardzumyan, E., Gabrielian, E. Goukasova, G., Wikman, G., and Wagner, H., Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human. Phytomedicine, 7, 351–364 (2000).PubMedGoogle Scholar
  23. Sheeja, K., Shihab, P. K., and Kuttan, G., Antioxidant and anti-Inflammatory activities of the plant Andrographis Paniculata Nees. Immunopharmacol. Immunotoxicol., 28, 129–140 (2006).PubMedCrossRefGoogle Scholar
  24. Shen, Y. C., Chen, C. F., and Chiou, W. F., Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. Br. J. Pharmacol., 135, 399–406 (2002).PubMedCrossRefGoogle Scholar
  25. Shen, Y-H., Li, R-T., Xiao, W-L., Xu, G., Lin, Z-W., Zhao, Q-S., and Sun, H-D., ent-Labdane diterpenoids from Andrographis paniculata. J. Nat. Prod., 69, 319–322 (2006).PubMedCrossRefGoogle Scholar
  26. Suo, X. B., Zhang, H., and Wang, Y-Q., HPLC determination of andrographolide in rat whole blood: study on the pharmacokinetics of andrographolide incorporated in liposomes and tablets. Biomed. Chromatogr., 21, 730–734 (2007).PubMedCrossRefGoogle Scholar
  27. Thamlikitkul, V. Dechatiwongse, T., Theerapong, S., Chantrakul, C., Boonroj, P., and Punkrut, W., Efficacy of Andrographis paniculata, Nees for pharyngotonsillitis. J. Med. Assoc. Thailand 74, 437–442 (1991).Google Scholar
  28. Tomazetti, J., Avila, D. S., Ferreira, A. P., Martins, J. S. Souza, F. R., Royer, C., Rubin, M. A., Oliveira, M. R., Bonacorso, H. G., Martins, M. A., Zanatta, N., and Mello, C. F., Baker yeast-induced fever in young rats: Characterization and validation of an animal model for antipyretics screening. J. Neurosci. Methods, 147, 29–35 (2005).PubMedCrossRefGoogle Scholar
  29. Winter, C. A., Risley, G. A., and Nass, G. W., Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med., 111, 544–547 (1962).PubMedGoogle Scholar
  30. Xia, Y-F., Ye, B-Q., Li, Y-D., Wang, J.-G., He, X.-J., Lin, X., Yao, X., Ma, D., Slungaard, A., Hebbel, R. P., Key, N. S., and Geng, J.-G., Andrographolide attenuates inflammation by inhibition of NF-kB Activation through covalent modification of reduced cysteine 62 of p50. J. Immunol., 173, 4207–4217 (2004).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea and Springer Netherlands 2009

Authors and Affiliations

  • Supawadee Suebsasana
    • 1
    • 3
  • Panicha Pongnaratorn
    • 2
  • Jintana Sattayasai
    • 2
  • Tarinee Arkaravichien
    • 2
  • Siriporn Tiamkao
    • 2
  • Chantana Aromdee
    • 1
  1. 1.Pharmaceutical Chemistry, Faculty of Pharmaceutical SciencesKhon Kaen UniversityKhon KaenThailand
  2. 2.Department of Pharmacology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
  3. 3.Pharmaceutical Chemistry, Faculty of Pharmaceutical SciencesKhon Kaen UniversityKhon KaenThailand

Personalised recommendations