Archives of Pharmacal Research

, Volume 32, Issue 8, pp 1103–1108 | Cite as

Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases

  • Claudio Napoli
  • Louis J. Ignarro


Nitric oxide (NO) is a pivotal signaling messenger in the cardiovascular system. NO participates in regulatory functions including control of hemostasis, fibrinolysis, platelet and leukocyte interactions with the arterial wall, regulation of vascular tone, proliferation of vascular smooth muscle cells, and homeostasis of blood pressure. Diminished NO bioavailability and abnormalities in NO-dependent signaling are among central factors of vascular disease, although it is unclear whether this is a cause of, or result of endothelial dysfunction or both pathogenic events. Disturbances in NO bioavailability have been linked to cause endothelial dysfunction, leading to increased susceptibility to atherosclerotic lesion progression, hypertension, hypercholesterolemia, diabetes mellitus, thrombosis and stroke.

Key words

Nitric oxide Atherosclerosis Smooth muscle cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins, G. B. and Jain, M. K., Role of krüppel-like transcription actors in endothelial biology. Circ. Res., 100, 1686–16895 (2007).PubMedCrossRefGoogle Scholar
  2. Boon, R. A., Fledderus, J. O., Volger, O. L., van Wanrooij, E. J., Pardali, E., Weesie, F., Kuiper, J., Pannekoek, H., ten Dijke, P., and Horrevoets, A. J., KLF2 suppresses TGF-beta signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler. Thromb. Vasc. Biol., 27, 532–539 (2007).PubMedCrossRefGoogle Scholar
  3. Bouhlel, M. A., Staels, B., and Chinetti-Gbaguidi, G., Peroxisome proliferator-activated receptors—from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. J. Intern. Med., 263, 28–42 (2008).PubMedGoogle Scholar
  4. Cao, S., Yao, J., and Shah, V., The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function. J. Biol. Chem., 278, 5894–5901 (2003).PubMedCrossRefGoogle Scholar
  5. D’Armiento, F. P., Bianchi, A., De Nigris, F., Capuzzi, D. M., D’Armiento, M. R., Crimi, G., Abete, P., Palinski, W., Condorelli, M., and Napoli, C., Age-related effects on atherogenesis and scavenger enzymes of intracranial and extracranial arteries in men without classical risk factors for atherosclerosis. Stroke, 32, 2472–2479 (2001).PubMedCrossRefGoogle Scholar
  6. de Nigris, F., Lerman, A., Ignarro, L. J., Ignarro-Williams, S., Sica, V., Baker, A. H., Lerman, L. O., Geng, Y. J., and Napoli, C., Oxidation-sensitive mechanisms, vascular apoptosis and atherosclerosis. Trends. Mol. Med., 9, 351–359 (2003).PubMedCrossRefGoogle Scholar
  7. Dekker, R. J., Boon, R. A., Rondaij, M. G., Kragt, A., Volger, O. L., Elderkamp, Y. W., Meijers, J. C., Voorberg, J., Pannekoek, H., and Horrevoets, A. J., KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood, 107, 4354–4363 (2006).PubMedCrossRefGoogle Scholar
  8. Dekker, R. J., van Thienen, J. V., Rohlena, J., de Jager, S. C., Elderkamp, Y. W., Seppen, J., de Vries, C. J., Biessen, E. A., van Berkel, T. J., Pannekoek, H., and Horrevoets, A. J., Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am. J. Pathol., 167, 609–618 (2005).PubMedGoogle Scholar
  9. Doughan, A. K., Harrison, D. G., and Dikalov, S. I., Molecular mechanisms of angiotensin II mediated mitochondrial dysfunction. linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ. Res., 102, 488–496 (2008).PubMedCrossRefGoogle Scholar
  10. Fledderus, J. O., van Thienen, J. V., Boon, R. A., Dekker, R. J., Rohlena, J., Volger, O. L., Bijnens, A. P., Daemen, M. J., Kuiper, J., van Berkel, T. J., Pannekoek, H., and Horrevoets, A. J., Prolonged shear stress and KLF2 suppress constitutive pro-inflammatory transcription through inhibition of ATF2. Blood, 109, 4249–4257 (2007).PubMedCrossRefGoogle Scholar
  11. Garcia-Cardena, G., Fan, R., Shah, V., Sorrentino, R., Cirino, G., Papapetropoulos, A., and Sessa, W. C., Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature, 392, 821–824 (1998).PubMedCrossRefGoogle Scholar
  12. Goodwin, B. L., Solomonson, L. P., and Eichler, D. C., Argininosuccinate synthase expression is required to maintain nitric oxide production and cell viability in aortic endothelial cells. J. Biol. Chem., 279, 18353–18360 (2004).PubMedCrossRefGoogle Scholar
  13. Goya, K., Sumitani, S., XU, X., Kitamura, T., Yamamoto, H., Kurebayashi, S., Saito, H., Kouhara, H., Kasayama, S., and Kawase, I., Peroxisome proliferator-activated receptor α agonists increase nitric oxide synthase expression in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol., 24, 658–663 (2004).PubMedCrossRefGoogle Scholar
  14. Hayashi, T., Juliet, P. A., Miyazaki, A., Ignarro, L. J., and Iguchi, A., High glucose downregulates the number of caveolae in monocytes through oxidative stress from NADPH oxidase: Implications for atherosclerosis. Biochim. Biophys. Acta., 1772, 364–372 (2007).PubMedGoogle Scholar
  15. Ignarro, L. J., Cirino, G., Casini, A., and Napoli, C., Nitric oxide as a signaling molecule in the vascular system: An overview. J. Cardiovasc. Pharmacol., 34, 879–886 (1999).PubMedCrossRefGoogle Scholar
  16. Ignarro, L. J., Napoli, C., and Loscalzo, J., Nitric oxidedonating compounds and cardiovascular agents modulating the bioactivity of nitric oxide: An overview. Circ. Res., 90, 21–28 (2002).PubMedCrossRefGoogle Scholar
  17. Ignarro, L. J. and Napoli, C., Novel features on nitric oxide, endothelial nitric oxide synthase and atherosclerosis. Curr. Atheroscler. Rep., 6, 278–287 (2004).CrossRefGoogle Scholar
  18. Israelian-Konaraki, Z. and Reaven, P. D., Peroxisome proliferator-activated receptor-alpha and atherosclerosis: from basic mechanisms to clinical implications. Cardiol Rev., 13, 240–246 (2005).PubMedCrossRefGoogle Scholar
  19. Lavi, S., Yang, E. H., Prasad, A., Mathew, V., Barsness, G. W., Rihal, C. S., Lerman, L. O., and Lerman, A., The interaction between coronary endothelial dysfunction, local oxidative stress, and endogenous nitric oxide in humans. Hypertension, 51, 127–133 (2008).PubMedCrossRefGoogle Scholar
  20. Lim, E. J., Smart, E. J., Toborek, M., and Hennig, B., The role of caveolin-1 in PCB77-induced eNOS phosphorylation in human-derived endothelial cells. Am. J. Physiol. Heart. Circ. Physiol., 293, H3340–H3347 (2007).PubMedCrossRefGoogle Scholar
  21. Lin, Z., Kumar, A., Senbanerjee, S., Staniszewski, K., Parmar, K., Vaughan, D. E., Gimbrone, M. A. Jr, Balasubramanian, V., Garcia-Cardena, G., Jain, M. K., Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ. Res., 96, e48–e57 (2005).PubMedCrossRefGoogle Scholar
  22. Liu, V. W. T. and Huang, P. L., Cardiovascular roles of nitric oxide: A review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc. Res., 77, 19–29 (2008).PubMedGoogle Scholar
  23. Maniatis, N. A., Brovkovych, V., Allen, S. E., John, T. A., Shajahan, A. N., Tiruppathi, C., Vogel, S. M., Skidgel, R. A., Malik, A. B., and Minshall, R. D., Novel mechanism of endothelial nitric oxide synthase activation mediated by caveolae internalization in endothelial cells. Circ. Res., 99, 870–877 (2006).PubMedCrossRefGoogle Scholar
  24. Napoli, C., de Nigris, F., Williams-Ignarro, S., Pignalosa, O., Sica, V., and Ignarro, L. J., Nitric oxide and atherosclerosis: An update. Nitric Oxide, 15, 265–279 (2006).PubMedCrossRefGoogle Scholar
  25. Napoli, C. and Ignarro, L. J., Nitric oxide and atherosclerosis. Nitric Oxide, 5, 88–97 (2001).PubMedCrossRefGoogle Scholar
  26. Napoli, C. and Ignarro, L. J., Nitric oxide-releasing drugs. Annu. Rev. Pharmacol. Toxicol., 43, 97–123 (2003).PubMedCrossRefGoogle Scholar
  27. Napoli, C. and Ignarro, L. J., Polymorphisms in endothelial nitric oxide synthase and carotid artery atherosclerosis. J. Clin. Pathol., 60, 341–344 (2007).PubMedCrossRefGoogle Scholar
  28. Napoli, C., Lerman, L. O., De Nigris, F., Loscalzo, J., and Ignarro, L. J., Glyoxidized low-density lipoprotein down regulates endothelial nitric oxide synthase in human coronary cells. J. Am. Coll. Cardiol., 40, 1515–1522 (2002).PubMedCrossRefGoogle Scholar
  29. Napoli, C. and Lerman, L. O., Involvement of oxidation-sensitive mechanisms in the cardiovascular effects of hypercholesterolemia. Mayo Clin. Proc., 76, 619–631 (2001).PubMedCrossRefGoogle Scholar
  30. Napoli, C., Paterno, R., Faraci, F. M., Taguchi, H., Postiglione, A., and Heistad, D. D., Mildly oxidized low-density lipoprotein impairs responses of carotid but not basilar artery in rabbits. Stroke, 28, 2266–2272 (1997).PubMedGoogle Scholar
  31. Napoli, C., Witztum, J. L., De Nigris, F., Palumbo, G., D’Armiento, F. P., and Palinski, W., Intracranial arteries of human fetuses are more resistant to hypercholesterolemia-induced fatty streak formation than extracranial arteries. Circulation, 99, 2003–2010 (1999).PubMedGoogle Scholar
  32. Parmar, K. M., Larman, H. B., Dai, G., Zhang, Y., Wang, E. T., Moorthy, S. N., Kratz, J. R., Lin, Z., Jain, M. K., Gimbrone, M. A. Jr, and Garcia-Cardena, G., Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Invest., 116, 49–58 (2006).PubMedCrossRefGoogle Scholar
  33. Parmar, K. M., Nambudiri, V., Dai, G., Larman, H. B., Gimbrone, M. A. Jr, and Garcia-Cardena, G., Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J. Biol. Chem., 280, 26714–26719 (2005).PubMedCrossRefGoogle Scholar
  34. Rabelink, T. J. and Luscher, T. F., Endothelial Nitric Oxide Synthase: Host defense enzyme of the endothelium? Arterioscler. Thromb. Vasc. Biol., 26, 267–271 (2006).PubMedCrossRefGoogle Scholar
  35. Schiffrin, E. L., Oxidative stress, nitric oxide synthase, and superoxide dismutase: A matter of imbalance underlies endothelial dysfunction in the human coronary circulation. Hypertension, 51, 31–32 (2008).PubMedCrossRefGoogle Scholar
  36. Sen-Banerjee, S., Lin, Z., Atkins, G. B., Greif, D. M., Rao, R. M., Kumar, A., Feinberg, M. W., Chen, Z., Simon, D. I., Luscinskas, F. W., Michel, T. M., Gimbrone, M. A. Jr, Garcia-Cardena, G., and Jain, M. K., KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med., 199, 1305–1315 (2004).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2009

Authors and Affiliations

  1. 1.Department of General Pathology and Excellence Research Center on Cardiovascular Diseases, Chair of Clinical Pathology, 1St School of MedicineII University of NaplesNaplesItaly
  2. 2.Department of Medical and Molecular PharmacologyUniversity of California Los Angeles, David Geffen School of Medicine, Center for Health SciencesLos AngelesUSA
  3. 3.WCU program, School of MedicineKonkuk UniversitySeoulKorea
  4. 4.Department of General Pathology, 1St School of MedicineII University of NaplesNaplesItaly

Personalised recommendations