Skip to main content
Log in

Physicochemical characterization and skin permeation of liposome formulations containing clindamycin phosphate

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

This study was undertaken to evaluate the physicochemical properties and skin permeation of liposome formulations containing clindamycin phosphate (CP), especially when charge was imparted to the liposome. Five different liposome formulations were prepared using Phospholipon 85G (PL) and cholesterol (CH) by conventional lipid film hydration technique. Molar ratio of CH to PL was varied in the range of 0.16–1.0. Charged liposomes were prepared in the same way with addition of 1,2-dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP) and 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA) as charge carrier lipid for cationic or anionic charge of the liposome, respectively. Fresh full-thickness mice skin was taken and used for skin permeation study using Keshary-Chien diffusion cell with 1.77 cm2 diffusion area at 37°C. All liposome formulations prepared showed homogeneous size distribution with mean particle size of about 1 μm or less. Among the five liposome formulations prepared, formulation with the molar ratio of 0.5 showed the best result in the physicochemical properties such as polydispersity index, entrapment efficiency, size evolution, and ability of the liposome to retain CP as of entrapped in the vesicles. Charge-impartation of the formulation with cationic charge carrier lipid resulted in additional benefit in terms of inhibition of size evolution, the ability of the liposome to retain CP in the vesicles, and skin permeation. Steady state flux of the drug through the mice skin in the cationic liposome vesicles was 0.75 ± 0.01 μg/cm2h while that in the control (dissolved into mixed alcohol solution) was 0.17 μg/cm2h. One half molar ratio of CH to PL was optimal in terms of physicochemical properties of the liposome formulation containing CP, and incorporation of cationic charge carrier lipid appeared to provide additional benefits for the stability of the liposome formulation and skin permeation of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, R., Katare, O. P., and Vyas, S. P., Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int. J. Pharm., 228, 43–52 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Akhavan, A. and Bershad, S., Topical acne drugs: review of clinical properties, systemic exposure and safety. Am. J. Clin. Dermatol., 4, 473–492 (2003).

    Article  PubMed  Google Scholar 

  • Amin, K., Riddle, C., Aires, D., Schweiger, and E., Common and alternate oral antibiotic therapies for acne vulgaris: a review. J. Drugs Dermatol., 6, 873–880 (2007).

    PubMed  Google Scholar 

  • Anderson, M and Omri, A., The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv., 11, 33–39 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, N., Richter, L., Stephenson, J., and Briggman, K., Determination of lipid phase transition temperatures in hybrid bilayer membranes. Langmuir, 22, 8333–8336 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Becker, L., Bergstresser, P., Whiting, D., Clendenning, W., Dobson, R., Jordan, W., Abell, E., LeZotte, L., Pochi, P., Shupack, J., Sigafoes, R., Stoughton, R., and Voorhees, J., Topical clindamycin therapy for acne vulgaris: a cooperative clinical study. Arch. Dermatol., 117, 482–485 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Bikowski, J. and Del Rosso, J. Q., Benzoyl peroxide microsphere cream as monotherapy and combination treatment of acne. J. Drugs. Dermatol., 7, 590–595 (2008).

    PubMed  Google Scholar 

  • Chabanel, A., Flamm, M., Sung, K., Lee, M., Schachter, D., and Chien, S., Influence of cholesterol content on red cell membrane viscoelasticity and fluidity. Biophys. J., 44, 171–176 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Choi, M. and Maibach, H., Liposomes and niosomes as topical delivery systems. Skin Pharmacol. Physiol., 18, 209–219 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Charro, M. B. and Guy, R. H., Iontophoresis: applications in drug delivery and noninvasive monitoring, In Guy, R.H. and Hadgraft, J., (Eds.). Transdermal Drug Delivery. Marcel Dekker, New York, pp. 199–226, (2003).

    Google Scholar 

  • El Maghraby, G., Williams, A., and Barry, B., Can drug bearing liposomes penetrate intact skin?, J. Pharm. Pharmacol., 58, 415–429 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Foco, A., Gasperlin, M., and Kristl, J., Investigation of lipo somes as carriers of sodium ascorbyl phosphate for cutaneous photoprotection. Int. J. Pharm., 291, 21–29 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Guay, D., Topical clindamycin in the management of acne vulgaris. Expert Opin. Pharmacother., 8, 2625–2664 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Krakowski, A., Stendardo, S., and Eichenfield, L., Practical considerations in acne treatment and the clinical impact of topical combination therapy. Pediatr. Dermatol., 25, 1–14 (2008).

    Article  PubMed  Google Scholar 

  • Kumar, R., Singh, B., Bakshi, G., and Karare, O., Development of liposomal systems of finasteride for topical applications: design, characterization, and in vitro evaluation. Pharm. Dev. Technol., 12, 591–601 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Kunynetz, R., Systemic antibiotic therapy for acne: a review. Skin Therapy Lett., 7, 3–7 (2002).

    PubMed  CAS  Google Scholar 

  • Lee, S., Lee, J., and Choi, Y., Skin permeation enhancement of ascorbyl palmitate by liposomal hydrogel (lipogel) formulation and electrical assistance. Biol. Pharm. Bull., 30, 393–396 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Maubec, E., Wolkenstein, P., Loriot, M., Wechsler, J., Mulot, C., Beaune, P., Revuz, J., and Roujeau, J., Minocycline-induced DRESS: evidence for accumulation of the culprit drug. Dermatology, 216, 200–204 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Mura, S., Pirot, F., Manconi, M., Falson, F., and Fadda, A., Liposomes and niosomes as potential carriers for dermal delivery of minoxidil. J. Drug Target, 15, 101–108 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Ogiso, T., Niinaka, N., and Iwaki, M., Mechanism for enhancement effect of lipid disperse system on percutaneous absorption. J. Pharm. Sci., 85, 57–64 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Ogiso, T., Yamaguchi, T., Iwaki, M., Tanino, T., and Miyake, Y., Effect of positively and negatively charged liposomes on skin permeation of drugs. J. Drug Target., 9, 49–59 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ohvo-Rekila, H., Ramstedt, B., Leppimaki, P., and Slotte, J., Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res., 41, 66–97 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Patel, V. B., Misra, A., and Marfatia, Y. S., Topical liposomal gel of tretinoin for the treatment of acne: research and clinical implications. Pharm. Dev. Technol., 5, 455–464 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Patel, V. B. and Misra, A. N., Encapsulation and stability of clofazimine liposomes. J. Microencapsul., 16, 357–367 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Perugini, P., and Pavanettto, F., Liposomes containing boronophenylalanine for boron neutron capture therapy. J. Microencapsul., 15, 473–483 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Plessis, D. J., Ramachandran, C., Weiner, N., and Muller, D. G., The influence of lipid composition and lamellarity of liposomes on the physical stability of liposomes upon storage. Int. J. Pharm., 127, 273–278 (1996).

    Article  Google Scholar 

  • Ross, J. I., Snelling, A. M., Carnegie, E., Coates, P., Cunliffe, W. J., Bettoli, V., Tosti, G., and Katsambas, A., Galvan Perez Del Pulgar, J. I., Rollman, O., Torok, L., Eady E. A., Cove, J. H., Antibiotic-resistant acne: lessons from Europe. Br. J. Dermatol., 148, 467–478 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Sentjure, M., Vrhovnik, K., and Kristl, J., Liposomes as a topical delivery system: the role of size on transport studied by the EPR imaging method. J. Control. Release, 59, 87–97 (1999).

    Article  Google Scholar 

  • Sezer, A., Akbuga, J., and Bas, A., In vitro evaluation of enrofloxacin-loaded MLV liposomes. Drug Deliv., 14, 47–53 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Singh, B., Mehta, G., Kumar, R., Bhatia, A., Ahuja, N., and Katare, O. P., Design, development and optimization of nimesulide-loaded liposomal systems for topical application. Curr. Drug Deliv., 2, 143–153 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Song, Y. and Kim, C., Topical delivery of low-molecular-weight heparin with surface-charged flexible liposomes. Biomaterials, 27, 271–280 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Touitou, E., Junginger, H. E., Weiner, N. D., Nagai, T., and Mezei, M., Liposomes as carriers for topical and transdermal delivery. J. Pharm. Sci., 83, 1189–1203 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Trotta, M., Peira, E., Carlotti, M. E., and Gallarate, M., Deformable liposomes for dermal administration of methotrexate. Int. J. Pharm., 270, 119–125 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Valenta, C., Wanka, M., and Heidlas, J., Evaluation of novel soya-lecithin formulations for dermal use containing ketoprofen as a model drug. J. Control. Release, 63, 165–173 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Vemuri, S. and Rhodes, C. T., Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta. Helv., 70, 95–111 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Verma, D, Verma, S., Blume, G., and Fahr, A., Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study. Eur. J. Pharm. Biopharm., 55, 271–277 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Yarosh, D. B., Liposomes in investigative dermatology. Photodermatol. Photoimmunol. Photomed., 17, 203–212 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Yeagle, P., Cholesterol and the cell membrane. Biochem. Biophys. Acta., 822, 267–287 (1985).

    PubMed  CAS  Google Scholar 

  • Yu, H. Y. and Liao, H. M., Triamcinolone permeation from different liposome formulations through rat skin in vitro. Int. J. Pharm., 127, 1–7 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Kyu Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanmugam, S., Song, CK., Nagayya-Sriraman, S. et al. Physicochemical characterization and skin permeation of liposome formulations containing clindamycin phosphate. Arch. Pharm. Res. 32, 1067–1075 (2009). https://doi.org/10.1007/s12272-009-1713-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-009-1713-0

Key words

Navigation