Archives of Pharmacal Research

, Volume 32, Issue 6, pp 907–913

Effect of coenzyme Q10 on cutaneous healing in skin-incised mice

  • Bang Shil Choi
  • Ho Sun Song
  • Hee Rae Kim
  • Tae Wook Park
  • Tae Doo Kim
  • Bong Jae Cho
  • Chang Jong Kim
  • Sang Soo Sim
Research Articles Drug Actions

Abstract

Coenzyme Q10 (CoQ10) is a biosynthesized quinone with 10 isoprene side chains in humans. To investigate the anti-inflammatory and wound healing effect of CoQ10, we performed in vivo and in vitro experiments. In vivo studies, there were 3 groups; Naive (without skin incision), Control (with skin incision) and CoQ10 (100 mg/kg treatment with skin incision). Collagen-like polymer (CLP) level of CoQ10 group was increased significantly compared to the control group (p<0.05). Also, CoQ10 group showed significant inhibition on myeloperoxidase (MPO) and PLA2 level compared to the control group (p<0.05). These data show that CoQ10 may have an anti-inflammatory and a wound healing effect. CoQ10 showed significant antioxidant activity in vivo on malondialdehyde (MDA) and superoxide dismutase (SOD) levels compared to the control group (p<0.05). Although CoQ10 did not show antioxidant activity in cell free system of DPPH radical scavenge, it had a potent antioxidant activity in cell culture system of both silica- and zymosan-induced reactive oxygen species generation using Raw 264.7 cells. This result may be associated with the conversion of CoQ10 to the reduced form (CoQ10H2) in the presence of some kinds of intracellular reducing agents. In conclusion, it is considered that CoQ10 appears to have a cutaneous healing effect in vivo, which may be related to the secondary action of CoQ10.

Key words

CoQ10 Antioxidant Collagen-like polymer Cutaneous healing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baronas-Lowell, D., Lauer-Fields, J. L., and Fields, G. B., Defining the roles of collagen and collagen-like proteins within the proteome. J. Liq. Chromatogr. Technol., 26, 2225–2254 (2003).CrossRefGoogle Scholar
  2. Bentinger, M., Brismar, K., and Dallner, G., The antioxidant role of coenzyme Q. Mitochondrion, 7S, S41–50 (2007).CrossRefGoogle Scholar
  3. Bodeker, G. and Hughes, M. A., Wound healing, traditional treatments and research policy. In: Prendergast HDV, Etkin NL, Harris DR, Houghton PJ. Plants for Food and Medicine. 1st ed. Royal Botanic Gardens Kew, London, 345–359 (1998).Google Scholar
  4. Boland, A., Delapierre, D., Mossay, D., Hans, P., and Dresse, A., Propofol protects cultured brain cells from iron ion-induced death: comparison with trolox. Eur. J. Pharmacol., 404, 21–27 (2000).PubMedCrossRefGoogle Scholar
  5. Bradley, P. B., Priebat, D. A., Christensen, R. D., and Rothstein, G., Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol., 78, 206–209 (1982).PubMedCrossRefGoogle Scholar
  6. Clark, R. A. F., Biology of dermal wound repair. In: Nemeth AJ ed, Dermatologic Clinics. Elsevier, Philadelphia, PA, ETATS-UNIS. Wound Healing, 11, 647–666 (1993).Google Scholar
  7. Cos, P., Rajan, P., Vedernikova, I., Calomme, M., Pieters, L., Vlietinck, A. J., Augustyns, K., Haemers, A., and Berghe, D. V., In Vitro antioxidant profile of phenolic acid derivatives. Free Rad. Res., 36, 711–716 (2002).CrossRefGoogle Scholar
  8. Crane, F. L., Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr., 20, 591–598 (2001).PubMedGoogle Scholar
  9. Da Silva, A., Amrani, Y., Trifillieff, A., and Landry, Y., Involvement of B2 receptors in the bradykinin-induced relaxation of guinea-pig isolated trachea. Br. J. Pharmacol., 114, 103–108 (1995).PubMedGoogle Scholar
  10. de Luca, C., Deeva, I., Mikhal’Chik, E., and Korkina, L., Beneficial effects of pro-/antioxidant-based nutraceuticals in the skin rejuvenation techniques. Cell. Mol. Biol., 53, 94–101 (2007).PubMedGoogle Scholar
  11. Dombrecht, E. J., Cos, P., Berghe, V. D., Offel, J. F. V., Schuerwegh, A. J., Bridts, C. H., Stevens, W. J., and Clerck, L. S., Selective in vitro antioxidant properties of bisphosphonates. Biochem. Biophys. Res. Commun., 314, 675–680 (2004).PubMedCrossRefGoogle Scholar
  12. Ernster, L. and Dallner, G., Biochemical, physiological and medical aspects of ubiquinone function. BBA-Mole. Basis Dis., 1271, 195–204 (1995).Google Scholar
  13. Gupta, A., Singh, R. L., and Raghubir, R., Antioxidant status during cutaneous wound healing in immunocompromised rats. Mol. Cell Biochem., 241, 1–7 (2002).PubMedCrossRefGoogle Scholar
  14. James, T. J., and Hughes, M. A., Hofman, D., Cherry, G. W., Taylor, R. P., Antioxidant characteristics chronic wound fluid. Br. J. Dermatol., 145, 185–186 (2001).PubMedCrossRefGoogle Scholar
  15. Kirby, A. J. and Schmidt, R. J., The antioxidant activity of Chinese herbs for eczema and of placebo herbs-I. J. Ethnopharmacol., 56, 103–108 (1997).PubMedCrossRefGoogle Scholar
  16. Lamme, E. N., Van Leeuwen, R. T. J., Brandsma, K., Van Marle, J., and Middelkoop, E., Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. J. Pathol., 190, 595–603 (2000).PubMedCrossRefGoogle Scholar
  17. Lusa, S., Myllärniemi, M., Volmonen, K., Vauhkonen, M., and Somerharju, P., Degradation of pyrene-labelled phospholipids by lysosomal phospholipases in vitro. Dependence of degradation on the length and position of the labelled and unlabelled acyl chains. Biochem. J., 315, 947–952 (1996).PubMedGoogle Scholar
  18. McCune, L. M. and Johns, T., Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the Indigenous Peoples of the North American boreal forest. J. Ethnopharmacol., 82, 197–205 (2002).PubMedCrossRefGoogle Scholar
  19. Mensah, A. Y., Sampson, J., Houghton, P. J., Hylands, P. J., Westbrook, J., Dunn, M., Hughes, M. A., and Cherry, G. W., Effects of Buddleja globosa leaf and its constituents relevant to wound healing. J. Ethnopharmacol., 77, 219–226 (2001).PubMedCrossRefGoogle Scholar
  20. Nohl, H., Gille, L., and Staniek, K., The biochemical, pathophysiological, and medical aspects of ubiquinone function. Ann. N.Y. Acad. Sci., 854, 394–409 (1998).PubMedCrossRefGoogle Scholar
  21. Ohkawa, H., Ohishi, N., and Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95, 351–358 (1979).PubMedCrossRefGoogle Scholar
  22. Radvanyi, F., Jordan, L., Russo-Marie, F., and Bon, C., A sensitive and continuous fluorometric assay for phospholipase A2 using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem., 177, 103–109 (1989).PubMedCrossRefGoogle Scholar
  23. Russo, A., Longo, R., and Vanella, A., Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin. Fitoterapia 73, 21–29 (2002).CrossRefGoogle Scholar
  24. Ruszczak, Z., Effect of collagen matrices on dermal wound healing. Adv. Drug Deliv. Rev., 55, 1595–1611 (2003).PubMedCrossRefGoogle Scholar
  25. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C., Measurement of protein using bicinchoninic acid. Anal. Biochem., 163, 279–282 (1987).CrossRefGoogle Scholar
  26. Tran, M. T., Mitchell, T. M., Kennedy, D. T., and Giles, J. T., Role of coenzyme Q10 in chronic heart failure, angina, and hypertension. Pharmacotherapy, 21, 797–806 (2001).PubMedCrossRefGoogle Scholar
  27. Xiao-liang, G. A. N., Zi-ging, H. E. I., He-qing, H., Li-xin, C., Shang-rong, L. I., and Jun, C. A. I., Effect of Astragalus membranaceus injection on the activity of the intestinal mucosal mast cells after hemorrhagic shock-reperfusion in rats. Chin. Med., 119, 1892–1898 (2006).Google Scholar
  28. Yamashita, S. and Yamamoto, Y., Simultaneous detection of ubiquinol and ubiquinone in human plasma as a marker of oxidative stress. Anal. Biochem., 250, 66–73 (1997)PubMedCrossRefGoogle Scholar
  29. Yin, J., Tomycz, L., Bonner, G., and Wang, D. I. C., A simple and rapid assay of collagen-like polymer in crude lysate from Escherichia coli. J. Microbiol. Meth., 49, 321–323 (2002).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2009

Authors and Affiliations

  • Bang Shil Choi
    • 1
  • Ho Sun Song
    • 1
  • Hee Rae Kim
    • 1
  • Tae Wook Park
    • 1
  • Tae Doo Kim
    • 1
  • Bong Jae Cho
    • 1
  • Chang Jong Kim
    • 1
  • Sang Soo Sim
    • 1
  1. 1.Department of Pathophysiology, College of PharmacyChung-Ang UniversitySeoulKorea

Personalised recommendations