Archives of Pharmacal Research

, Volume 32, Issue 6, pp 857–862 | Cite as

Bile acid derivatives from a sponge-associated bacterium Psychrobacter sp.

  • Huayue Li
  • Pramod B. Shinde
  • Hye Ja Lee
  • Eun Sook Yoo
  • Chong-O. Lee
  • Jongki Hong
  • Sang Ho Choi
  • Jee H. Jung
Research Articles Drug Discovery and Development

Abstract

In our search for bioactive metabolites from a marine sponge-associated bacterium Psychrobacter sp., a new bile acid derivative (1), which was assumed to be an artifact, were isolated along with six known (27) compounds by bioactivity-guided fractionation. Elucidation of the structure of the new compound was done using a combination of NMR (1H, 13C, HMBC, HSQC, and COSY) and MS spectroscopy. Compound 1 exhibited moderate suppressive effects on both NO and IL-6 production at a concentration of 200 μM (87.3 μg/mL) without significant cytotoxicity against cells. Compounds 25 and 7 showed selective inhibitory activity against several human pathogenic bacterial strains at the low concentration of 30 μg/well. In a cytotoxicity evaluation, only compound 7 showed mild cytotoxicity against five human solid tumor cell lines (A-549, SK-OV-3, SK-MEL-2, XF-498, and HCT-15) with ED50 values in the range of 11–14 μg/mL.

Key words

Sponge-associated Psychrobacter sp. Bile acid Anti-inflammatory Antibacterial Cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bettarello, L., Bortolini, O., Fantin, G., and Guerrini, A., Mixed oxo-hydroxy bile acids as actual or potential impurities in ursodeoxycholic acid preparation: a 1H and 13C NMR study. Il Farmaco, 55, 51–55 (2000).PubMedCrossRefGoogle Scholar
  2. Bowman, J. P., Cavanagh, J., Austin, J. J., and Sanderson, K., Novel Psychrobacter species from Antarctic ornithogenic soils. Int. J. Syst. Bacteriol., 46, 841–848 (1996).PubMedCrossRefGoogle Scholar
  3. Danzinger, R. G., Hofmann, A. F., Schoenfield, L. J., and Thistle, J. L., Dissolution of cholesterol gallstones by chenodeoxycholic acid. N. Engl. J. Med. 286, 1–8 (1972).PubMedGoogle Scholar
  4. Fantin, G., Fogagnolo, M., Medici, A., Pedrini, P., and Cova, U., Spontaneous ketalization of 3-keto-5b-cholanic acids in methanol. Tetrahedron Lett., 33, 3235–3236 (1992).CrossRefGoogle Scholar
  5. Fantin, G., Fogagnolo, M., Medici, A., Pedrini, P., and Cova, U., Synthesis of 7- and 12-hydroxy- and 7,12-dihydroxy-3-keto-5fl-cholan-24-oic acids by reduction of 3,7-, 3,12- and 3,7,12-oxo derivatives. Steroids, 58, 524–526 (1993).PubMedCrossRefGoogle Scholar
  6. Fiorucci, S., Rizzo, G., Donini, A., Distrutti, E., and Santucci, L., Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol. Med. 13, 298–309 (2007).PubMedCrossRefGoogle Scholar
  7. Hofmann, A. F. and Hagey, L. R., Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci., 65, 2461–2483 (2008).PubMedCrossRefGoogle Scholar
  8. Howard, D. E. and Fromm, H., Nonsurgical management of gallstone disease. Gastroenterol. Clin. North Am. 28, 133–144 (1999).PubMedCrossRefGoogle Scholar
  9. Kim, D., Lee, J. S., Kim, J., Kang, S. J., Yoon, J. H., Kim, W. G., and Lee, C. H., Biosynthesis of bile acids in a variety of marine bacterial taxa. J. Microbiol. Biotechnol., 17, 403–407 (2007).PubMedGoogle Scholar
  10. Lehrer, R. I., Rosenman, M., Harwig, S. S. S. L., Jackson, R., and Eisenhauer, P., Ultrasensitive assays for endogenous antimicrobial activity. J. Immunol. Methods, 137, 167–173 (1991).PubMedCrossRefGoogle Scholar
  11. Li, H., Lee, B. C., Kim, T. S., Bae, K. S., Hong, J., Choi, S. H., Bao, B., and Jung, J. H., Bioactive cyclic dipeptides from a marine sponge-associated bacterium, Psychrobacter sp. Biomol. Ther., 16, 356–363 (2008).CrossRefGoogle Scholar
  12. Li, Z., Hu, Y., Liu, Y., Huang, Y., He, L., and Miao, X., 16S rRNA clone library-based bacterial phylogenetic diversity associated with three South China Sea sponges. World J. Microbiol. Biotechnol., 23, 1265–1272 (2007).CrossRefGoogle Scholar
  13. Maneerat, S., Nitoda, T., Kanzaki, H., and Kawai, F., Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl. Michrobiol. Biotechnol., 67, 679–683 (2005).CrossRefGoogle Scholar
  14. Park, S. C., Kim, C. J., Uramoto, M., Yun, H. I., Yoon, K. H., and Oh, T. K., Antibacterial substance produced by Streptococcus faecium under anaerobic culture. Biosci. Biotech. Biochem., 59, 1966–1967 (1995).CrossRefGoogle Scholar
  15. Piel, J., Metabolites from symbiotic bacteria. Nat. Prod. Rep., 21, 519–538 (2004).PubMedCrossRefGoogle Scholar
  16. Ryu, S. Y., Oak, M. H., Yoon, S. K., Cho, D. I., Yoo, G. S., Kim, T. S., and Kim, K. M., Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris. Planta Med., 66, 358–360 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2009

Authors and Affiliations

  • Huayue Li
    • 1
  • Pramod B. Shinde
    • 1
  • Hye Ja Lee
    • 2
  • Eun Sook Yoo
    • 2
  • Chong-O. Lee
    • 3
  • Jongki Hong
    • 4
  • Sang Ho Choi
    • 5
  • Jee H. Jung
    • 1
  1. 1.College of PharmacyPusan National UniversityBusanKorea
  2. 2.College of MedicineCheju National UniversityJejuKorea
  3. 3.Pharmaceutical Screening CenterKorea Research Institute of Chemical TechnologyDaejonKorea
  4. 4.College of PharmacyKyung Hee UniversitySeoulKorea
  5. 5.Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea

Personalised recommendations