Anti-inflammatory effect of Trichostatin-A on murine bone marrow-derived macrophages



Histone deacetylase (HDAC) inhibitors were recently shown to suppress inflammatory responses in models of autoimmune and inflammatory diseases. In this study, the anti-inflammatory effects of five different HDAC inhibitors on lipopolysaccharide-(LPS)-stimulated macrophages were compared and the mechanisms of these effects were demonstrated. Trichostatin-A (TSA) and scriptaid, two of the five HDAC inhibitors, showed the most potent inhibitory effects on the nitric-oxide (NO) production of RAW264.7 cells and bone-marrow-derived macrophages (BMDMs). TSA significantly decreased the mRNA and protein levels of the proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, whereas the pretreatment with TSA increased the level of the immunosuppressive cytokine IL-10. TSA also reduced the cell surface markers of the maturity of the macrophages. Furthermore, a longer duration (up to 8 h) of hyperacetylation was observed in the cells that had been exposed to TSA, whereas the hyperacetylation induced by the other HDAC inhibitors was absent after 8 h. These results demonstrated that TSA is the most potent HDAC inhibitor of histone deacetylation and has the greatest ability to induce anti-inflammatory activity in cloned and naïve macrophages. These results are expected to serve as a guide for future studies on the ability of HDAC inhibitors to inhibit acute and chronic inflammatory diseases.

Key words

Trichostatin-A Anti-inflammation Cytokine Immunosuppressor Histone deacetylase inhibitor Hyperacetylation 


  1. Amirzargar, A., Khosravi, F., Dianat, S., Hushmand, F., Maryousef, P., Foroushani, A. R., Lotfi, J. and Nikbin, B., Profile of cytokine gene polymorphisms in Iranian multiple sclerosis patients. Mult. Scler., 13, 253–255 (2007).PubMedCrossRefGoogle Scholar
  2. Arend, W. P. and Dayer, J. M., Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum., 38, 151–160 (1995).PubMedCrossRefGoogle Scholar
  3. Barnes, P. J. and Karin, M., Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med., 336, 1066–1071 (1997).PubMedCrossRefGoogle Scholar
  4. Boyes, J., Byfield, P., Nakatani, Y., and Ogryzko, V., Regulation of activity of the transcription factor GATA-1 by acetylation. Nature, 396, 594–598 (1998).PubMedCrossRefGoogle Scholar
  5. Brennan, F. M., Maini, R. N., and Feldmann, M., Role of pro-inflammatory cytokines in rheumatoid arthritis. Springer Semin. Immunopathol., 20, 133–147 (1998).PubMedCrossRefGoogle Scholar
  6. Butler, D. M., Malfait, A. M., Mason, L. J., Warden, P. J., Kollias, G., Maini, R. N., Feldmann, M., and Brennan, F. M., DBA/1 mice expressing the human TNF-alpha transgene develop a severe, erosive arthritis: characterization of the cytokine cascade and cellular composition. J. Immunol., 159, 2867–2876 (1997).PubMedGoogle Scholar
  7. Choo, Q. Y., Ho, P. C., and Lin, H. S., Histone deacetylase inhibitors: new hope for rheumatoid arthritis? Curr. Pharm. Des., 14, 803–820 (2008).PubMedCrossRefGoogle Scholar
  8. Chung, Y. L., Lee, M. Y., Wang, A. J., and Yao, L. F., A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol. Ther., 8, 707–717 (2003).PubMedCrossRefGoogle Scholar
  9. Curat, C. A., Miranville, A., Sengenes, C., Diehl, M., Tonus, C., Busse, R., and Bouloumie, A., From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes, 53, 1285–1292 (2004).PubMedCrossRefGoogle Scholar
  10. Duffield, J. S., The inflammatory macrophage: a story of Jekyll and Hyde. Clin. Sci. (Lond), 104, 27–38 (2003).CrossRefGoogle Scholar
  11. Duval, D. L., Miller, D. R., Collier, J., and Billings, R. E., Characterization of hepatic nitric oxide synthase: identification as the cytokine-inducible form primarily regulated by oxidants. Mol. Pharmacol., 50, 277–284 (1996).PubMedGoogle Scholar
  12. Edens, R. E., Dagtas, S., and Gilbert, K. M., Histone deacetylase inhibitors induce antigen specific anergy in lymphocytes: a comparative study. Int. Immunopharmacol., 6, 1673–1681 (2006).PubMedCrossRefGoogle Scholar
  13. Feldmann, M., Brennan, F. M., and Maini, R. N., Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol., 14, 397–440 (1996).PubMedCrossRefGoogle Scholar
  14. Goerdt, S., Politz, O., Schledzewski, K., Birk, R., Gratchev, A., Guillot, P., Hakiy, N., Klemke, C. D., Dippel, E., Kodelja, V., and Orfanos, C. E. Alternative versus classical activation of macrophages. Pathobiology, 67, 222–226 (1999).PubMedCrossRefGoogle Scholar
  15. Gordon, S., Lawson, L., Rabinowitz, S., Crocker, P. R., Morris, L., and Perry, V. H., Antigen markers of macrophage differentiation in murine tissues. Curr. Top Microbiol. Immunol., 181, 1–37 (1992).PubMedGoogle Scholar
  16. Gu, W. and Roeder, R. G., Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 90, 595–606 (1997).PubMedCrossRefGoogle Scholar
  17. Huang, L., Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. J. Cell. Physiol., 209, 611–616 (2006).PubMedCrossRefGoogle Scholar
  18. Huang, N., Katz, J. P., Martin, D. R., and Wu, G. D., Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine, 9, 27–36 (1997).PubMedCrossRefGoogle Scholar
  19. Hutchison, S., Choo-kang, B. S., Bundick, R. V., Leishman, A. J., Brewer, J. M., Mcinnes, I. B., and Garside, P., Tumour necrosis factor-alpha blockade suppresses murine allergic airways inflammation. Clin. Exp. Immunol., 151, 114–122 (2008).PubMedGoogle Scholar
  20. Imhof, A., Yang, X. J., Ogryzko, V. V., Nakatani, Y., Wolffe, A. P., and Ge, H., Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol., 7, 689–692 (1997).PubMedCrossRefGoogle Scholar
  21. Johnstone, R. W., Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov., 1, 287–299 (2002).PubMedCrossRefGoogle Scholar
  22. Jun, C. D., Choi, B. M., Kim, H. M., and Chung, H. T., Involvement of protein kinase C during taxol-induced activation of murine peritoneal macrophages. J. Immunol., 154, 6541–6547 (1995).PubMedGoogle Scholar
  23. Keen, J. C., Yan, L., Mack, K. M., Pettit, C., Smith, D., Sharma, D., and Davidson, N. E., A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res. Treat., 81, 177–186 (2003).PubMedCrossRefGoogle Scholar
  24. Kinne, R. W., Brauer, R., Stuhlmuller, B., Palombo-kinne, E., and Burmester, G. R., Macrophages in rheumatoid arthritis. Arthritis Res., 2, 189–202 (2000).PubMedCrossRefGoogle Scholar
  25. Kishimoto, T., Akira, S., Narazaki, M., and Taga, T., Interleukin-6 family of cytokines and gp130. Blood, 86, 1243–1254 (1995).PubMedGoogle Scholar
  26. Kuo, M. H. and Allis, C. D., Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays, 20, 615–626 (1998).PubMedCrossRefGoogle Scholar
  27. Laduca, J. R. and Gaspari, A. A., Targeting tumor necrosis factor alpha. New drugs used to modulate inflammatory diseases. Dermatol. Clin., 19, 617–635 (2001).PubMedCrossRefGoogle Scholar
  28. Lawrence, T., Gilroy, D. W., Colville-nash, P. R., and Willoughby, D. A., Possible new role for NF-kappaB in the resolution of inflammation. Nat. Med., 7, 1291–1297 (2001).PubMedCrossRefGoogle Scholar
  29. Lee, J. K., Lee, M. K., Yun, Y. P., Kim, Y., Kim, J. S., Kim, Y. S., Kim, K., Han, S. S., and Lee, C. K., Acemannan purified from Aloe vera induces phenotypic and functional maturation of immature dendritic cells. Int. Immunopharmacol., 1, 1275–1284 (2001).PubMedCrossRefGoogle Scholar
  30. Lee, S. H., Park, H. H., Kim, J. E., Kim, J. A., Kim, Y. H., Jun, C. D., and Kim, S. H., Allose gallates suppress expression of pro-inflammatory cytokines through attenuation of NF-kappaB in human mast cells. Planta Med., 73, 769–773 (2007).PubMedCrossRefGoogle Scholar
  31. Leenen, P. J., De Bruijn, M. F., Voerman, J. S., Campbell, P. A., and Van Ewijk, W., Markers of mouse macrophage development detected by monoclonal antibodies. J. Immunol. Methods, 174, 5–19 (1994).PubMedCrossRefGoogle Scholar
  32. Leoni, F., Fossati, G., Lewis, E. C., Lee, J. K., Porro, G., Pagani, P., Modena, D., Moras, M. L., Pozzi, P., Reznikov, L. L., Siegmund, B., Fantuzzi, G., Dinarello, C. A., and Mascagni, P., The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol. Med., 11, 1–15 (2005).PubMedCrossRefGoogle Scholar
  33. Leoni, F., Zaliani, A., Bertolini, G., Porro, G., Pagani, P., Pozzi, P., Dona, G., Fossati, G., Sozzani, S., Azam, T., Bufler, P., Fantuzzi, G., Goncharov, I., Kim, S. H., Pomerantz, B. J., Reznikov, L. L., Siegmund, B., Dinarello, C. A., and Mascagni, P., The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Natl. Acad. Sci. U S A, 99, 2995–3000 (2002).PubMedCrossRefGoogle Scholar
  34. Lowenstein, C. J., Hill, S. L., Lafond-walker, A., Wu, J., Allen, G., Landavere, M., Rose, N. R., and Herskowitz, A., Nitric oxide inhibits viral replication in murine myocarditis. J. Clin. Invest., 97, 1837–1843 (1996).PubMedCrossRefGoogle Scholar
  35. Makarov, S. S., NF-kappaB as a therapeutic target in chronic inflammation: recent advances. Mol. Med. Today., 6, 441–448 (2000).PubMedCrossRefGoogle Scholar
  36. Marletta, M. A., Nitric oxide synthase structure and mechanism. J. Biol. Chem., 268, 12231–12234 (1993).PubMedGoogle Scholar
  37. Mcknight, A. J. and Gordon, S., The EGF-TM7 family: unusual structures at the leukocyte surface. J. Leukoc. Biol., 63, 271–280 (1998).PubMedGoogle Scholar
  38. Mease, P. J., Goffe, B. S., Metz, J., Vanderstoep, A., Finck, B., and Burge, D. J., Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet, 356, 385–390 (2000).PubMedCrossRefGoogle Scholar
  39. Mishra, N., Reilly, C. M., Brown, D. R., Ruiz, P., and Gilkeson, G. S., Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest., 111, 539–552 (2003).PubMedGoogle Scholar
  40. Mocellin, S., Panelli, M. C., Wang, E., Nagorsen, D., and Marincola, F. M., The dual role of IL-10. Trends Immunol., 24, 36–43 (2003).PubMedCrossRefGoogle Scholar
  41. Morgan, M. M., Clayton, C. C., and Heinricher, M. M., Dissociation of hyperalgesia from fever following intracerebroventricular administration of interleukin-1beta in the rat. Brain Res., 1022, 96–100 (2004).PubMedCrossRefGoogle Scholar
  42. Murakami, H., Akbar, S. M., Matsui, H., Horiike, N., and Onji, M., Macrophage migration inhibitory factor activates antigen-presenting dendritic cells and induces inflammatory cytokines in ulcerative colitis. Clin. Exp. Immunol., 128, 504–510 (2002).PubMedCrossRefGoogle Scholar
  43. Nishida, K., Komiyama, T., Miyazawa, S., Shen, Z. N., Furumatsu, T., Doi, H., Yoshida, A., Yamana, J., Yamamura, M., Ninomiya, Y., Inoue, H., and Asahara, H., Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum., 50, 3365–3376 (2004).PubMedCrossRefGoogle Scholar
  44. Okamoto, H., Fujioka, Y., Takahashi, A., Takahashi, T., Taniguchi, T., Ishikawa, Y., and Yokoyama, M., Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1). J. Atheroscler. Thromb., 13, 183–191 (2006).PubMedGoogle Scholar
  45. Palmer, R. M., Ashton, D. S., and Moncada, S., Vascular endothelial cells synthesize nitric oxide from Larginine. Nature, 333, 664–6 (1988).PubMedCrossRefGoogle Scholar
  46. Pazin, M. J. and Kadonaga, J. T., What’s up and down with histone deacetylation and transcription? Cell, 89, 325–328 (1997).PubMedCrossRefGoogle Scholar
  47. Reddy, P., Teshima, T., Kukuruga, M., Ordemann, R., Liu, C., Lowler, K., and Ferrara, J. L., Interleukin-18 regulates acute graft-versus-host disease by enhancing Fas-mediated donor T cell apoptosis. J. Exp. Med., 194, 1433–1440 (2001).PubMedCrossRefGoogle Scholar
  48. Reilly, C. M., Mishra, N., Miller, J. M., Joshi, D., Ruiz, P., Richon, V. M., Marks, P. A., and Gilkeson, G. S., Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid. J. Immunol., 173, 4171–418 (2004).PubMedGoogle Scholar
  49. Renard, P. and Raes, M., The proinflammatory transcription factor NFkappaB: a potential target for novel therapeutical strategies. Cell Biol. Toxicol., 15, 341–344 (1999).PubMedCrossRefGoogle Scholar
  50. Richon, V. M., Webb, Y., Merger, R., Sheppard, T., Jursic, B., Ngo, L., Civoli, F., Breslow, R., Rifkind, R. A., and Marks, P. A., Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc. Natl. Acad. Sci. U S A, 93, 5705–5708 (1996).PubMedCrossRefGoogle Scholar
  51. Rimaniol, A. C., Gras, G., Verdier, F., Capel, F., Grigoriev, V. B., Porcheray, F., Sauzeat, E., Fournier, J. G., Clayette, P., Siegrist, C. A., and Dormont, D., Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type. Vaccine, 22, 3127–3135 (2004).PubMedCrossRefGoogle Scholar
  52. Roncarolo, M. G., Battaglia, M., and Gregori, S., The role of interleukin 10 in the control of autoimmunity. J. Autoimmun., 20, 269–272 (2003).PubMedCrossRefGoogle Scholar
  53. Soler, C., Garcia-manteiga, J., Valdes, R., Xaus, J., Comalada, M., Casado, F. J., Pastor-anglada, M., Celada, A., and Felipe, A., Macrophages require different nucleoside transport systems for proliferation and activation. Faseb J., 15, 1979–1988 (2001).PubMedCrossRefGoogle Scholar
  54. Song, J., Noh, J. H., Lee, J. H., Eun, J. W., Ahn, Y. M., Kim, S. Y., Lee, S. H., Park, W. S., Yoo, N. J., Lee, J. Y., and Nam, S. W., Increased expression of histone deacetylase 2 is found in human gastric cancer. Apmis., 113, 264–268 (2005).PubMedCrossRefGoogle Scholar
  55. Struhl, K., Histone acetylation and transcriptional regulatory mechanisms. Genes. Dev., 12, 599–606 (1998).PubMedCrossRefGoogle Scholar
  56. Suuronen, T., Huuskonen, J., Pihlaja, R., Kyrylenko, S., and Salminen, A., Regulation of microglial inflammatory response by histone deacetylase inhibitors. J. Neurochem., 87, 407–416 (2003).PubMedCrossRefGoogle Scholar
  57. Takai, N., Ueda, T., Nishida, M., Nasu, K., and Narahara, H., M344 is a novel synthesized histone deacetylase inhibitor that induces growth inhibition, cell cycle arrest, and apoptosis in human endometrial cancer and ovarian cancer cells. Gynecol. Oncol., 101, 108–113 (2006).PubMedCrossRefGoogle Scholar
  58. Tsuji, N., Kobayashi, M., Nagashima, K., Wakisaka, Y., and Koizumi, K., A new antifungal antibiotic, trichostatin. J. Antibiot. (Tokyo), 29, 1–6 (1976).Google Scholar
  59. Van Den Brande, J. M., Koehler, T. C., Zelinkova, Z., Bennink, R. J., Te Velde, A. A., Ten Cate, F. J., Van Deventer, S. J., Peppelenbosch, M. P., and Hommes, D. W. Prediction of antitumour necrosis factor clinical efficacy by real-time visualisation of apoptosis in patients with Crohn’s disease. Gut, 56, 509–517 (2007).PubMedCrossRefGoogle Scholar
  60. Weisberg, S. P., Mccann, D., Desai, M., Rosenbaum, M., Leibel, R. L., and Ferrante, A. W. Jr., Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest., 112, 1796–1808 (2003).PubMedGoogle Scholar
  61. Xing, Z., Gauldie, J., Cox, G., Baumann, H., Jordana, M., Lei, X. F., and Achong, M. K., IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J. Clin. Invest., 101, 311–320 (1998).PubMedCrossRefGoogle Scholar
  62. Yoshida, M., Kijima, M., Akita, M., and Beppu, T., Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem., 265, 17174–17179 (1990).PubMedGoogle Scholar
  63. Yu, Z., Zhang, W., and Kone, B. C., Histone deacetylases augment cytokine induction of the iNOS gene. J. Am. Soc. Nephrol., 13, 2009–2017 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2009

Authors and Affiliations

  1. 1.College of PharmacyChungbuk National UniversityCheongjuKorea
  2. 2.Department of Biology Education, College of EducationChungbuk National UniversityCheongjuKorea

Personalised recommendations