Advertisement

Archives of Pharmacal Research

, Volume 32, Issue 4, pp 465–480 | Cite as

Innovative vaccine production technologies: The evolution and value of vaccine production technologies

  • KyungDong Bae
  • JunYoul Choi
  • YangSuk Jang
  • SangJeom Ahn
  • ByungKi Hur
Review

Abstract

This review paper provides an overview of innovative technologies designed to produce bacterial, viral, recombinant subunit, and polysaccharide vaccines, as well as combination vaccines. Advances in this field are illustrated by vaccines against DTP (diphtheria-tetanus-pertussis), influenza, hepatitis B (HepB) and typhoid fever. In addition, technological trends regarding antigens, adjuvants, and preservatives in vaccines are discussed. The progress achieved in vaccine production technologies is especially important for improving the protection of vulnerable populations against infectious diseases. These at-risk groups include infants, the elderly and immunocompromized individuals, as well as people living in developing countries or emerging economies.

Key words

Vaccine Antigen Adjuvant CpG Virosome Ty21a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ada, G. and Ramshaw, I., DNA vaccination. Expert Opin. Emerg. Drugs, 8, 27–35 (2003).PubMedCrossRefGoogle Scholar
  2. Adachi, J. A., D’Alessio, F. R., and Ericsson, C. D., Reactive arthritis associated with typhoid vaccination in travelers: report of two cases with negative HLA-B27. J. Travel Med., 7, 35–36 (2000).PubMedGoogle Scholar
  3. Amorij, J. P., Meulenaar, J., Hinrichs, W. L., Stegmann, T., Huckriede, A., Coenen, F., and Frijlink, H. W., Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine, 25, 6447–6457 (2007).PubMedCrossRefGoogle Scholar
  4. Andre, F. E., Development and clinical application of new polyvalent combined peadiatric vaccines. Vaccine, 26, 1620–1627 (1999).CrossRefGoogle Scholar
  5. Audsley, J. M. and Tannock, G. A., Cell-based influenza vaccines: progress to date. Drugs, 68, 1483–1491 (2008).PubMedCrossRefGoogle Scholar
  6. Audsley, J. M. and Tannock, G. A., The role of cell culture vaccines in the control of the next influenza pandemic. Expert Opin. Biol. Ther., 4, 709–717 (2004).PubMedCrossRefGoogle Scholar
  7. Bachmayer, H. and Wagner, K., Characterization of recent influenza A variants. I. Biochemical studies. Arch. Gesamte Virusforsch., 42, 177–181 (1973).PubMedCrossRefGoogle Scholar
  8. Bae, C. S. (Bae, K. D.), Lim, G. Y., Kim, J. S., and Hur, B. K., Quadrivalent combined vaccine including diphtheria toxoid, tetanus toxoid, detoxified whole cell pertussis, and hepatitis B surface antigen. J. Microbiol. Biotechnol., 13, 338–343 (2003).Google Scholar
  9. Bae, C. S. (Bae, K. D.), Park, K. N., Ahn, S. J., Kim, J. S., and Hur, B. K., Development of a quadrivalent combined DTaP-HepB vaccine with a low toxicity and a stable HBsAg immunogenicity. J. Microbiol. Biotechnol., 12, 787–792 (2002).Google Scholar
  10. Barry, M. and Cooper, C., Review of hepatitis B surface antigen-1018 ISS adjuvant-containing vaccine safety and efficacy. Expert Opin. Biol. Ther., 7, 1731–1737 (2007).PubMedCrossRefGoogle Scholar
  11. Belshe, R. B., Current status of live attenuated influenza virus vaccine in the US. Virus Res. 103, 177–185 (2004).PubMedCrossRefGoogle Scholar
  12. Bernstein, D. I., A live attenuated human rotavirus vaccine. Drugs Today, 43, 281–291 (2007).PubMedCrossRefGoogle Scholar
  13. Biedzka-Sarek, M. and El Skurnik, M., How to outwit the enemy: dendritic cells face Salmonella. APMIS, 114, 589–600 (2006).PubMedCrossRefGoogle Scholar
  14. Black, W. J., Munoz, J. J., Peacock, M. G., Schad, P. A., Cowell, J. L., Burchall, J. J., Lim, M., Kent, A., Steinman, L., and Falkow, S., ADP-ribosyltransferase activity of pertussis toxin and immunomodulation by Bordetella pertussis. Science, 240, 656–659 (1988).PubMedCrossRefGoogle Scholar
  15. Blumberg, B. S., Gerstley, B. J., Hungerford, D. A., London, W. T., and Sutnick, A. I., A serum antigen (Australia antigen) in Down’s syndrome, leukemia, and hepatitis. Ann. Intern. Med., 66, 924–931 (1967).PubMedGoogle Scholar
  16. Brusic, V., August, J. T., and Petrovsky N., Information technologies for vaccine research. Expert Rev. Vaccines, 4, 407–417 (2005).PubMedCrossRefGoogle Scholar
  17. Bruss, V., Envelopment of the hepatitis B virus nucleocapsid. Virus Res., 106, 199–209 (2004).PubMedCrossRefGoogle Scholar
  18. Burnette, W. N., Bacterial ADP-ribosylating toxins: form, function, and recombinant vaccine development. Behring Inst. Mitt., 98, 434–441 (1997).PubMedGoogle Scholar
  19. Casey, J. R. and Pichichero, M. E., Acellular pertussis vaccine safety and efficacy in children, adolescents and adults. Drugs, 65, 1367–1389 (2005).PubMedCrossRefGoogle Scholar
  20. Chen, M. W., Cheng, T. J., Huang, Y., Jan, J. T., Ma, S. H., Yu, A. L., Wong, C. H., Ho, D. D., A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc. Natl. Acad. Sci. U.S.A., 105, 13538–13543 (2008).PubMedCrossRefGoogle Scholar
  21. Cho, H. J., Takabayashi, K., Cheng. P. M., Nguyen, M. D., Corr, M., Tuck, S., and Raz, E., Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat. Biotechnol. 18, 509–514 (2000).PubMedCrossRefGoogle Scholar
  22. Cintra, O. A. and Rey, L. C., Safety, immunogenicity and efficacy of influenza vaccine in children. J. Pediatr., 82, 83–90 (2006).Google Scholar
  23. Clements, C. J. and McIntyre, P. B., When science is not enough — a risk/benefit profile of thiomersal-containing vaccines. Expert Opin. Drug Saf., 5, 17–29 (2006).PubMedCrossRefGoogle Scholar
  24. Colacino, J. M. and Staschke, K. A., The identification and development of antiviral agents for the treatment of chronic hepatitis B virus infection. Prog. Drug Res., 50, 259–322 (1998).PubMedGoogle Scholar
  25. Couch, R. B., Advances in influenza virus vaccine research. Ann. N. Y. Acad. Sci., 685, 803–812. (1993).PubMedCrossRefGoogle Scholar
  26. Cusi, M. G., Zurbriggen, R., Correale, P., Valassina, M., Terrosi, C., Pergola, L., Valensin, P. E., and Glück, R., Influenza virosomes are an efficient delivery system for respiratory syncytial virus-F antigen inducing humoral and cell-mediated immunity. Vaccine, 20, 3436–3442 (2002).PubMedCrossRefGoogle Scholar
  27. Cyr, T., Menzies, A. J., Calver, J., and Whitehouse, L. W., A quantitative analysis for the ADP ribosylation activity of pertussis toxin: an enzymatic-HPLC coupled assay applicable to formulated whole cell and acellular 140 pertussis vaccine products. Biologicals, 29, 81–95 (2001).PubMedCrossRefGoogle Scholar
  28. Desombere, I., Van der Wielen, M., Van Damme, P., Stoffel, M., De Clercq, N., Goilav, C., and Leroux-Roels, G., Immune response of HLA DQ2 positive subjects, vaccinated with HBsAg/AS04, a hepatitis B vaccine with a novel adjuvant. Vaccine, 20, 2597–2602 (2002).PubMedCrossRefGoogle Scholar
  29. de Vries, J. J., Bungener, L., Ter Veer, W., van Alphen, L., van der Ley, P., Wilschut, J., and Huckriede, A., Incorporation of LpxL1, a detoxified lipopolysaccharide adjuvant, in influenza H5N1 virosomes increases vaccine immunogenicity. Vaccine, (2008) [Epub ahead of print].Google Scholar
  30. Di Fabio, J. L. and de Quadros, C., Considerations for combination vaccine development and use in the developing world. Clin. Infect. Dis., 33(Suppl. 4), S340–S345 (2001).PubMedCrossRefGoogle Scholar
  31. EMEA, Public statement on Triacelluvax; withdrawal of the marketing authorization in the European union. EMEA/15519/02 (2002).Google Scholar
  32. Engin, A., Influenza type A (H5N1) virus infection. Mikrobiyol. Bul., 41, 485–494 (2007).PubMedGoogle Scholar
  33. Evensen, O., Brudeseth, B., and Mutoloki, S., The vaccine formulation and its role in inflammatory processes in fish—effects and adverse effects. Dev. Biol. (Basel), 121, 117–125 (2005).Google Scholar
  34. Faquim-Mauro, E. L. and Macedo, M. S., Induction of IL-4-dependent, anaphylactic-type and IL-4-independent, non-anaphylactic-type IgG1 antibodies is modulated by adjuvants. Int. Immunol., 12, 1733–1740 (2000).PubMedCrossRefGoogle Scholar
  35. Fiers, W., De Filette, M., Birkett, A., Neirynck, S., and Min Jou, W., A “universal” human influenza A vaccine. Virus. Res., 103, 173–176 (2004).PubMedCrossRefGoogle Scholar
  36. Fraser, A., Paul, M., Goldberg, E., Acosta, C. J., and Leibovici, L., Typhoid fever vaccines: systematic review and meta-analysis of randomised controlled trials. Vaccine, 25, 7848–7857 (2007).PubMedCrossRefGoogle Scholar
  37. Frech, C., Hilbert, A. K., Hartmann, G., Mayer, K., Sauer, T., and Bolgiano, B., Physicochemical analysis of purified diphtheria toxoids: is toxoided then purified the same as purified then toxoided? Dev. Biol., 103, 205–215 (2000).Google Scholar
  38. Fukuda, Y., Kokuryu, H., and Imura, H., Diagnosis of type B hepatitis Rinsho Byori, 38, 573–577 (1990).PubMedGoogle Scholar
  39. Gentschev, I., Spreng, S., Sieber, H., Ures, J., Mollet, F., Collioud, A., Pearman, J., Griot-Wenk, M. E., Fensterle, J., Rapp, U. R., Goebel, W., Rothen, S. A., and Dietrich, G., Vivotif — a ‘magic shield’ for protection against typhoid fever and delivery of heterologous antigens. Chemotherapy, 53, 177–180 (2007).PubMedGoogle Scholar
  40. Germanier, R. and Füer, E., Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J. Infect. Dis., 131, 553–558 (1975).PubMedGoogle Scholar
  41. Germanier, R., Vaccination against typhoid fever with a live oral vaccine. Dev. Biol. Stand., 33, 85–88 (1976).PubMedGoogle Scholar
  42. Giannini, S. L., Hanon, E., Moris, P., Van Mechelen, M., Morel, S., Dessy, F., Fourneau, M. A., Colau, B., Suzich, J., Losonksy, G., Martin, M. T., Dubin, G., and Wettendorff, M. A., Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine, 24, 5937–5949 (2006).PubMedCrossRefGoogle Scholar
  43. Gidengil, C. A., Sandora, T. J., and Lee, G. M., Tetanusdiphtheria-acellular pertussis vaccination of adults in the USA. Expert Rev. Vaccines, 7, 621–634 (2008).PubMedCrossRefGoogle Scholar
  44. Gilman, R. H., Hornick, R. B., Woodard, W. E., DuPont, H. L., Snyder, M. J., Levine, M. M., and Libonati, J. P., Evaluation of a UDP-glucose-4-epimeraseless mutant of Salmonella typhi as a liver oral vaccine. J. Infect. Dis., 136, 717–723 (1977).PubMedGoogle Scholar
  45. Gomez, S. R., Yuen, C. T., Asokanathan, C., Douglas, B. A., Corbel, M. J., Coote, J. G., Parton, R., and Xing, D. K., ADP-ribosylation activity in pertussis vaccines and its relationship to the in vivo histamine-sensitisation test. Vaccine, 25, 3311–3318 (2007).PubMedCrossRefGoogle Scholar
  46. Granoff, D. M., Correlates of clinical performance of acellular pertussis vaccines: implications for development of DTaP combination vaccines. Biologicals, 27, 87–88 (1999).PubMedCrossRefGoogle Scholar
  47. Greenberg, D. P., Wong, V. K., Partridge, S., chang, S. J., Jing, J., Howe, B. J., and Ward, J. I., Immunogenicity of a haemophilus influenzae type b-tetanus toxoid conjugate vaccine when mixed with a diphtheriae-tetanusacellular pertussis-hepatitis B comination vaccine. Pediatr. Infect. Dis. J. 19, 1135–1140 (2000).PubMedCrossRefGoogle Scholar
  48. Grumelli, C., Verderio, C., Pozzi, D., Rossetto, O., Montecucco, C., and Matteoli, M., Internalization and mechanism of action of clostridial toxins in neurons. Neurotoxicology, 26, 761–767 (2005).PubMedCrossRefGoogle Scholar
  49. Hamid, N. and Jain, S. K., Immunological, cellular and molecular events in typhoid fever. Indian J. Biochem. Biophys., 44, 320–330 (2007).PubMedGoogle Scholar
  50. Hampson, A. W. and Mackenzie, J. S., The influenza viruses. Med. J. Aust., 185, 39–43 (2006).Google Scholar
  51. Hatae, K., Kimura, A., Okubo, R., Watanabe, H., Erlich, H. A., Ueda, K., Nishimura, Y., and Sasazuki, T., Genetic control of nonresponsiveness to hepatitis B virus vaccine by an extended HLA haplotype. Eur. J. Immunol., 22, 1899–1905 (1992).PubMedCrossRefGoogle Scholar
  52. Hardy, E., Martínez, E., Diago, D., Díaz, R., González, D., and Herrera, L., Large-scale production of recombinant hepatitis B surface antigen from Pichia pastoris. J. Biotechnol. 77, 157–167 (2000).PubMedCrossRefGoogle Scholar
  53. Hartman, Z. C., Appledorn, D. M., Amalfitano, A., Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res., 132, 1–14 (2008).PubMedCrossRefGoogle Scholar
  54. Heaton, P. M. and Ciarlet, M., Vaccines: the pentavalent rotavirus vaccine: discovery to licensure and beyond. Clin. Infect. Dis., 45, 1618–1624 (2007).PubMedCrossRefGoogle Scholar
  55. Heeg, K. and Dalpke, A., TLR-induced negative regulatory circuits: role of suppressor of cytokine signaling (SOCS) proteins in innate immunity. Vaccine, 21(Suppl. 2), S61–S67 (2003).PubMedCrossRefGoogle Scholar
  56. Heidary, N. and Cohen, D. E., Hypersensitivity reactions to vaccine components. Dermatitis, 16, 115–120 (2005).PubMedGoogle Scholar
  57. Hickman, F. W., Rhoden, D. L., Esaias, A. O., Baron, L. S., Brenner, D. J., and Farmer, J. J. 3rd., Evaluation of two Salmonella typhi strains with reduced virulence for use in teaching and proficiency testing. J. Clin. Microbiol., 15, 1085–1091 (1982).PubMedGoogle Scholar
  58. Hilleman, M. R., Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. Vaccine, 18, 1436–1447 (2000).PubMedCrossRefGoogle Scholar
  59. Horimoto, T. and Kawaoka, Y., Strategies for developing vaccines against H5N1 influenza A viruses. Trends Mol. Med., 12, 506–514 (2006).PubMedCrossRefGoogle Scholar
  60. Iglewski, W. J., Cellular ADP-ribosylation of elongation factor 2. Mol. Cell Biochem., 138, 131–133 (1994).PubMedCrossRefGoogle Scholar
  61. Ivanoff, B., Levine, M. M., and Lambert, P. H., Vaccination against typhoid fever: present status. Bull. World Health Organ., 72, 957–971 (1994).PubMedGoogle Scholar
  62. Jones, B. D. and Falkow, S., Salmonellosis: host immune responses and bacterial virulence determinants. Annu. Rev. Immunol., 14, 533–561 (1996).PubMedCrossRefGoogle Scholar
  63. Ju, C. L., Sheu, G. C., Cheng, Y., and Lu, C. H., Production and purification of Bordetella pertussis toxin. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi, 30, 72–83 (1997).PubMedGoogle Scholar
  64. Kaistha, J., Sokhey, J., Singh, S., Kumar, S., John, P. C., and Sharma, N. C., Adjuvant effect of DEAE-dextran and tetanus toxoid on whole cell heat inactivated phenol preserved typhoid vaccine. Indian J. Pathol. Microbiol., 39, 287–292 (1996).PubMedGoogle Scholar
  65. Kandimalla, E. R., Bhagat, L., Li, Y., Yu, D., Wang, D., Cong, Y. P., Song, S. S., Tang, J. X., Sullivan, T., and Agrawal, S., Immunomodulatory oligonucleotides containing a cytosine-phosphate-2′-deoxy-7-deazaguanosine motif as potent toll-like receptor 9 agonists. Proc. Natl. Acad. Sci. U.S.A., 102, 6925–6930 (2005).PubMedCrossRefGoogle Scholar
  66. Katayama, S., Oda, K., Ohgitani, T., Hirahara, T., and Shimizu, Y., Influence of antigenic forms and adjuvants on the IgG subclass antibody response to Aujeszky’s disease virus in mice. Vaccine, 17, 2733–2739 (1999).PubMedCrossRefGoogle Scholar
  67. Klinman, D. M., CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines, 2, 305–315 (2003).PubMedCrossRefGoogle Scholar
  68. Kossaczka, Z., Lin, F. Y., Ho, V. A., Thuy, N. T., Van Bay, P., Thanh, T. C., Khiem, H. B., Trach, D. D., Karpas, A., Hunt, S., Bryla, D. A., Schneerson, R., Robbins, J. B., and Szu, S. C., Safety and immunogenicity of Vi conjugate vaccines for typhoid fever in adults, teenagers, and 2- to 4-year-old children in Vietnam. Infect. Immun., 67, 5806–5810 (1999).PubMedGoogle Scholar
  69. Kulkarni, P. S., Raut, S. K., Patki, P. S., Phadke, M. A., Jadhav, S. S., Kapre, S. V., Dhorje, S. P., and Godse, S. R., Immunogenicity of a new, low-cost recombinant hepatitis B vaccine derived from Hansenula polymorpha in adults. Vaccine, 24, 3457–3460 (2006).PubMedCrossRefGoogle Scholar
  70. Levin, D. M., Wong, K. H., Reynolds, H. Y., Sutton, A., and Northrup, R. S., Vi antigen from Salmonella typhosa and immunity against typhoid fever. 11. Safety and antigenicity in humans. Infect. Immun., 12, 1290–1294 (1975).PubMedGoogle Scholar
  71. Levine, M. M. and Noriega, F., A review of the current status of enteric vaccines. P. N. G. Med. J., 38, 325–331 (1995).PubMedGoogle Scholar
  72. Levine, M. M., Ferreccio, C., Black, R. E., Tacket, C. O., and Germanier, R., Progress in vaccines against typhoid fever. Rev. Infect. Dis., 11(Suppl. 3), S552–S567 (1989).PubMedGoogle Scholar
  73. Levine, M. M., Tacket, C. O., Herrington, D., Losonsky, G., Murphy, J., and Ferreccio, C., The current status of typhoid vaccine development and clinical trials with typhoid vaccines. Southeast Asian J. Trop. Med. Public Health, 19, 459–469 (1988).PubMedGoogle Scholar
  74. Lin, F. Y., Ho, V. A., Khiem, H. B., Trach, D. D., Bay, P. V., Thanh, T. C., Kossaczka, Z., Bryla, D. A., Shiloach, J., Robbins, J. B., Schneerson. R., and Szu, S. C., The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children. N. Engl. J. Med., 344, 1263–1269 (2001).PubMedCrossRefGoogle Scholar
  75. Lindberg, A. A., Polyosides (encapsulated bacteria). C. R. Acad. Sci. III, Sci. Vie, 322, 925–932 (1999).PubMedGoogle Scholar
  76. Ljubojeviæ, S., The human papillomavirus vaccines. Acta Dermatovenerol. Croat., 14, 208 (2006).Google Scholar
  77. Lubran, M. M., Bacterial toxins. Ann. Clin. Lab. Sci., 18, 58–71 (1988).PubMedGoogle Scholar
  78. Maassab, H. F. and Bryant, M. L., The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev. Med. Virol., 9, 237–244 (1999).PubMedCrossRefGoogle Scholar
  79. Mahmood, K., Bright, R. A., Mytle, N., Carter, D. M., Crevar, C. J., Achenbach, J. E., Heaton, P. M., Tumpey, T. M., and Ross, T. M., H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses. Vaccine, 26, 5393–5399 (2008).PubMedCrossRefGoogle Scholar
  80. Marshall, G. S., Happe, L. E., Lunacsek, O. E., Szymanski, M. D., Woods, C. R., Zahn, M., and Russell, A., Use of combination vaccines is associated with improved coverage rates. Pediatr. Infect. Dis. J., 26, 496–500 (2007).PubMedCrossRefGoogle Scholar
  81. Marshall, J. D., Fearon, K., Abbate, C., Subramanian, S., Yee, P., Gregorio, J., Coffman, R. L., and Van Nest, G., Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J. Leukoc. Biol., 73, 781–792 (2003).PubMedCrossRefGoogle Scholar
  82. Matheson, A. J. and Goa, K. L., Diphtheria-tetanus-acellular pertussis vaccine adsorbed (Triacelluvax; DTaP3-CB): a review of its use in the prevention of Bordetella pertussis infection. Paediatr. Drugs, 2, 139–159 (2000).PubMedCrossRefGoogle Scholar
  83. Matson, D. O., The pentavalent rotavirus vaccine, RotaTeq. Semin. Pediatr. Infect. Dis., 17, 195–199 (2006).PubMedCrossRefGoogle Scholar
  84. McElrath, M. J., Selection of potent immunological adjuvants for vaccine construction. Semin. Cancer Biol. 6, 375–385 (1995).PubMedCrossRefGoogle Scholar
  85. McLemore, M. R., Gardasil: Introducing the new human papillomavirus vaccine. Clin. J. Oncol. Nurs., 10, 559–560 (2006).PubMedCrossRefGoogle Scholar
  86. Meyer, B. K., Ni, A., Hu, B., and Shi, L., Antimicrobial preservative use in parenteral products: past and present. J. Pharm. Sci., 96, 3155–3167 (2007).PubMedCrossRefGoogle Scholar
  87. Milstien, J., Munira, S. L., and McKinney, S. L., Issues in selection of DTwP-based combination vaccines. Vaccine, 21, 1658–1664 (2003).PubMedCrossRefGoogle Scholar
  88. Moravec, T., Schmidt, M. A., Herman, E. M., and Woodford-Thomas, T., Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine, 25, 1647–1657 (2007).PubMedCrossRefGoogle Scholar
  89. Morrison, W. I., Taylor, G., Gaddum, R. M., and Ellis, S. A., Contribution of advances in immunology to vaccine development. Adv. Vet. Med., 41, 181–195 (1999).PubMedCrossRefGoogle Scholar
  90. Myint, K. S. and Gibbons, R. V., Hepatitis E: a neglected threat. Trans. R. Soc. Trop. Med. Hyg., 102, 211–212 (2008).PubMedCrossRefGoogle Scholar
  91. Neirynck, S., Deroo, T., Saelens, X., Vanlandschoot, P., Jou, W. M., and Fiers, W., A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med., 5, 1157–1163 (1999).PubMedCrossRefGoogle Scholar
  92. O’Hagan, D. T., Ott, G. S., and Van Nest, G., Recent advances in vaccine adjuvants: the development of MF59 emulsion and polymeric microparticles. Mol. Med. Today, 3, 69–75 (1997).PubMedCrossRefGoogle Scholar
  93. O’Ryan, M., Rotarix (RIX4414): an oral human rotavirus vaccine. Expert Rev. Vaccines, 6, 11–19 (2007).PubMedCrossRefGoogle Scholar
  94. Palache, A. M., Brands, R., and van Scharrenburg, G. J., Immunogenicity and reactogenicity of influenza subunit vaccines produced in MDCK cells or fertilized chicken eggs. J. Infect. Dis. 176, 20–23 (1997).CrossRefGoogle Scholar
  95. Parton, R., Review of the biology of Bordetella pertussis. Biologicals, 27, 71–76 (1999).PubMedCrossRefGoogle Scholar
  96. Pawar, R. D., Patole, P. S., Ellwart, A., Lech, M., Segerer, S., Schlondorff, D., and Anders, H. J., Ligands to nucleic acid-specific toll-like receptors and the onset of lupus nephritis. J. Am. Soc. Nephrol., 17, 3365–3373 (2006).PubMedCrossRefGoogle Scholar
  97. Perentesis, J. P., Miller, S. P., and Bodley, J. W., Protein toxin inhibitors of protein synthesis. Biofactors, 3, 173–184 (1992).PubMedGoogle Scholar
  98. Petrovsky, N. and Aguilar, J. C., Vaccine adjuvants: current state and future trends. Immunol. Cell Biol., 82, 488–496 (2004).PubMedCrossRefGoogle Scholar
  99. Pichichero, M. E. and Stonehocker Quick, L., Clinical evaluation of Pediarix: a new pediatric combination vaccine. Clin. Pediatr. (Phila), 42, 393–400 (2003).CrossRefGoogle Scholar
  100. Pichichero, M. E., Acellular pertussis vaccines. Towards an improved safety profile. Drug Saf., 15, 311–324 (1996).PubMedCrossRefGoogle Scholar
  101. Pichichero, M. E., Bernstein, H., Blatter, M. M., Schuerman, L., Cheuvart, B., and Holmes, S. J., Immunogenicity and safety of a combination diphtheria, tetanus toxoid, acellular pertussis, hepatitis B, and inactivated poliovirus vaccine coadministered with a 7-valent pneumococcal conjugate vaccine and a Haemophilus influenzae type b conjugate vaccine. J. Pediatr., 151, 43–49, (2007).PubMedCrossRefGoogle Scholar
  102. Pines, E., Barrand, M., Fabre, P., Salomon, H., Blondeau, C., Wood, S. C., and Hoffenbach, A., New acellular pertussis-containing paediatric combined vaccines. Vaccine, 26, 1650–1656 (1999).CrossRefGoogle Scholar
  103. Plotkin, S. A. and Bouveret-Le Cam, N., A new typhoid vaccine composed of the Vi capsular polysaccharide. Arch. Intern. Med., 155, 2293–2299 (1995).PubMedCrossRefGoogle Scholar
  104. Plotkin, S. A., The effectiveness of whole-cell pertussis vaccines. Dev. Biol. Stand., 89, 171–174 (1997).PubMedGoogle Scholar
  105. Ponvert, C. and Scheinmann, P., Vaccine allergy and pseudo-allergy. Eur. J. Dermatol., 13, 10–15 (2003).PubMedGoogle Scholar
  106. Prescott, S., Developmental immunology and vaccines: cellular immune development and future vaccine strategies. Expert Rev. Vaccines, 3, 339–342 (2004).PubMedCrossRefGoogle Scholar
  107. Raffatellu, M., Chessa, D., Wilson, R. P., Dusold, R., Rubino, S., and Bäumler, A. J., The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect. Immun., 73, 3367–3374 (2005).PubMedCrossRefGoogle Scholar
  108. Rappuoli, R., Acellular pertussis vaccines: a turning point in infant and adolescent vaccination. Infect. Agents Dis., 5, 21–28 (1996).PubMedGoogle Scholar
  109. Relyveld, E. H., Current developments in production and testing of tetanus and diphtheria vaccines. Prog. Clin. Biol. Res., 47, 51–76 (1980).PubMedGoogle Scholar
  110. Ríhová, B., Immunomodulating activities of soluble synthetic polymer-bound drugs. Adv. Drug Deliv. Rev., 54, 653–674 (2002).PubMedCrossRefGoogle Scholar
  111. Robert, B. B., William, C. G., Paul, M. M., Harshvardhan, B. M., Kutubuddin, M., Keith, R., John, T., Ken, Z., Frederick, G. H., David, I. B., Karen, K., James, K., Pedro, A. P., Stan, L. B., Lihan, Y., and Mark, W., Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J. Infect. Dis., 181, 1133–1137 (2000).CrossRefGoogle Scholar
  112. Rose, G. W. and Cooper, C. L., Fluarix, inactivated splitvirus influenza vaccine. Expert Opin. Biol. Ther., 6, 301–310 (2006).PubMedCrossRefGoogle Scholar
  113. Safdar, A. and Cox, M. M., Baculovirus-expressed influenza vaccine. A novel technology for safe and expeditious vaccine production for human use. Expert Opin. Investig. Drugs, 16, 927–934 (2007).PubMedCrossRefGoogle Scholar
  114. Salehen, N. and Stover, C., The role of complement in the success of vaccination with conjugated vs. unconjugated polysaccharide antigen. Vaccine, 26, 451–459 (2008).PubMedCrossRefGoogle Scholar
  115. Sarkar, S. K. and Pal, S. C., The current status of diarrhoea related vaccines. Indian J. Public Health, 34, 20–34 (1990).PubMedGoogle Scholar
  116. Sato, Y. and Sato, H., Development of acellular pertussis vaccines. Biologicals, 27, 61–69 (1999).PubMedCrossRefGoogle Scholar
  117. Sesardic, D., Dawes, C. S., Mclellan, K., Durrani, Z., Yost, S. E., and Corbel, M. J., Non-pertussis components of combination vaccines: problems with potency testing. Biologicals, 27, 177–181 (1999).PubMedCrossRefGoogle Scholar
  118. Sheu, G. C., Wo, Y. Y., Yao, S. M., Chou, F. Y., Hsu, T. C., Ju, C. L., Cheng, Y., Chang, S. N., and Lu, C. H., Characteristics and potency of an acellular pertussis vaccine composed of pertussis toxin, filamentous hemagglutinin, and pertactin. J. Microbiol. Immunol. Infect., 34, 243–251 (2001).PubMedGoogle Scholar
  119. Slaney, J. M. and Curtis, M. A., Mechanisms of evasion of complement by Porphyromonas gingivalis. Front. Biosci., 13, 188–196 (2008).PubMedCrossRefGoogle Scholar
  120. Soda, K., Sakoda, Y., Isoda, N., Kajihara, M., Haraguchi, Y., Shibuya, H., Yoshida, H., Sasaki, T., Sakamoto, R., Saijo, K., Hagiwara, J., and Kida, H., Development of vaccine strains of H5 and H7 influenza viruses. Jpn. J. Vet. Res., 55, 93–98 (2008).PubMedGoogle Scholar
  121. Stephenne J., Development and production aspects of a recombinant yeast-derived hepatitis B vaccine. Vaccine, 8(Suppl), S69–73 (1990).PubMedGoogle Scholar
  122. Stephenson, I. and Nicholson, K. G., Influenza: vaccination and treatment. Eur. Respir. J. 17, 1282–1293 (2001).PubMedCrossRefGoogle Scholar
  123. Stubi, C. L., Landry, P. R., Pétignat, C., Bille, J., Genton, B., Darioli, R., and Burnier, M., Compliance to live oral Ty21a typhoid vaccine, and its effect on viability. J. Travel Med., 7, 133–137 (2000).PubMedGoogle Scholar
  124. Subramanian, S., Kim, J. J., Harding, F., Altaras, G. M., Aunins, J. G., and Zhou, W., Scaleable production of adenoviral vectors by transfection of adherent PER.C6 cells. Biotechnol. Prog., 23, 1210–1217 (2007).PubMedGoogle Scholar
  125. Swayne, D. E., Application of new vaccine technologies for the control of transboundary diseases. Dev. Biol. (Basel), 119, 219–228 (2004).Google Scholar
  126. Szu, S. C., Bystricky, S., Hinojosa-Ahumada, M., Egan, W., and Robbins, J. B., Synthesis and some immunologic properties of an O-acetyl pectin [poly(1→4)-α-D-GalpA]- protein conjugate as a vaccine for typhoid fever. Infect. Immun., 62, 5545–5549 (1994).PubMedGoogle Scholar
  127. Szu, S. C., Taylor, D. N., Trofa, A. C., Clements, J. D., Shiloach, J., Sadoff, J. C., Bryla, D. A., and Robbins, J. B., Laboratory and preliminary clinical characterization of Vi capsular polysaccharide-protein conjugate vaccines. Infect. Immun., 62, 4440–4444 (1994).PubMedGoogle Scholar
  128. Tai, S. S., Streptococcus pneumoniae protein vaccine candidates: properties, activities and animal studies. Crit. Rev. Microbiol., 32, 139–153 (2006).PubMedCrossRefGoogle Scholar
  129. Talbot, H. K., Keitel, W., Cate, T. R., Treanor, J., Campbell, J., Brady, R. C., Graham, I., Dekker, C. L., Ho, D., Winokur, P., Walter, E., Bennet, J., Formica, N., Hartel, G., Skeljo, M., and Edwards, K. M., Immunogenicity, safety and consistency of new trivalent inactivated influenza vaccine. Vaccine, 26, 4057–4061 (2008).PubMedCrossRefGoogle Scholar
  130. Tan, L. U., Fahim, R. E., Jackson, G., Phillips, K., Wah, P., Alkema, D., Zobrist, G., Herbert, A., Boux, L., and Chong, P., A novel process for preparing an acellular pertussis vaccine composed of non-pyrogenic toxoids of pertussis toxin and filamentous hemagglutinin. Mol. Immunol., 28, 251–255 (1991).PubMedCrossRefGoogle Scholar
  131. Taranger, J., Trollfors, B., Bergfors, E., Knutsson, N., Lagergård, T., Schneerson, R., and Robbins, J. B., Immunologic and epidemiologic experience of vaccination with a monocomponent pertussis toxoid vaccine. Pediatrics, 108, E115 (2001).PubMedCrossRefGoogle Scholar
  132. Thierie, J., Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae. J. Theor. Biol., 226, 483–501 (2004).PubMedCrossRefGoogle Scholar
  133. Thoelen, S., De Clercq, N., and Tornieporth, N., A prophylactic hepatitis B vaccine with a novel adjuvant system. Vaccine, 19, 2400–2403 (2001).PubMedCrossRefGoogle Scholar
  134. Throsby, M., van den Brink, E., Jongeneelen, M., Poon, L., Alard, P., Cornelissen, L., Bakker, A., Cox, F., van Deventer, E., Guan, Y., Cinatl, J., Meulen, J., Lasters, I., Carsetti, R., Peiris, M., de Kruif, J., and Goudsmit, J., Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE, 3, 1–15 (2008).CrossRefGoogle Scholar
  135. Tovar, J. M. and Bazaldua, O. V., New quadrivalent HPV vaccine developments. Postgrad. Med., 120, 14–16 (2008).PubMedCrossRefGoogle Scholar
  136. Tree, J. A., Richardson, C., Fooks, A. R., Clegg, J. C., and Looby, D., Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine, 19, 3444–3450 (2001).PubMedCrossRefGoogle Scholar
  137. Tsai, C. W., Duggan, P. F., Shimp, R. L. Jr., Miller, L. H., and Narum, D. L., Overproduction of Pichia pastoris or Plasmodium falciparum protein disulfide isomerase affects expression, folding and O-linked glycosylation of a malaria vaccine candidate expressed in P. pastoris. J. Biotechnol., 121, 458–470 (2006).PubMedCrossRefGoogle Scholar
  138. Ulaeto, D. and Hruby, D. E., Uses of vaccinia virus in vaccine delivery. Curr. Opin. Biotechnol., 5, 501–504 (1994).PubMedCrossRefGoogle Scholar
  139. Varecková, E., Mucha, V., Ciampor, F., Betáková, T., and Russ, G., Monoclonal antibodies demonstrate accessible HA2 epitopes in minor subpopulation of native influenza virus haemagglutinin molecules. Arch. Virol., 130 45–56 (1993).PubMedCrossRefGoogle Scholar
  140. Varecková, E., Mucha, V., Wharton, S. A., and Kostolanský, F., Inhibition of fusion activity of influenza A haemagglutinin mediated by HA2-specific monoclonal antibodies. Arch. Virol., 148, 469–486 (2003).PubMedCrossRefGoogle Scholar
  141. Vitek, C. R., Diphtheria. Curr. Top. Microbiol. Immunol., 304, 71–94 (2006).PubMedCrossRefGoogle Scholar
  142. Williams, J. R., Chen, P. Y., Cho, C. T., and Chin, T. D., Influenza: prospect for prevention and control. Kaohsiung J. Med. Sci., 18, 421–434 (2002).PubMedGoogle Scholar
  143. Wilson, R. P., Raffatellu, M., Chessa, D., Winter, S. E., Tükel, C., and Bäumler, A. J., The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella. Cell Microbiol., 10, 876–890 (2008).PubMedCrossRefGoogle Scholar
  144. Wintermeyer, S. M., Nahata, M. C., and Kyllonen, K. S., Whole-cell and acellular pertussis vaccines. Ann. Pharmacother., 28, 925–939 (1994).PubMedGoogle Scholar
  145. Wong, K. H., Feeley, J. C., Northrup, R. S., and Forlines, M. E., Vi antigen from Salmonella typhosa and immunity against typhoid fever. I. Isolation and immunologic properties in animals. Infect. Immun., 9, 348–353 (1974).PubMedGoogle Scholar
  146. Yamada, S., Suzuki, Y., Suzuki, T., Le, M. Q., Nidom, C. A., Sakai-Tagawa, Y., Muramoto, Y., Ito, M., Kiso, M., Horimoto, T., Shinya, K., Sawada, T., Kiso, M., Usui, T., Murata, T., Lin, Y., Hay, A., Haire, L. F., Stevens, D. J., Russell, R. J., Gamblin, S. J., Skehel, J. J., and Kawaoka, Y., Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to humantype receptors. Nature, 444, 378–382 (2006).PubMedCrossRefGoogle Scholar
  147. Yamamoto, S., Yamamoto, T., Nojima, Y., Umemori, K., Phalen, S., McMurray, D. N., Kuramoto, E., Iho, S., Takauji, R., Sato, Y., Yamada, T., Ohara, N., Matsumoto, S., Goto, Y., Matsuo, K., and Tokunaga, T., Discovery of immunostimulatory CpG-DNA and its application to tuberculosis vaccine development. Jpn. J. Infect. Dis., 55, 37–44 (2002).PubMedGoogle Scholar
  148. Yokosuka, O. and Arai, M., Molecular biology of hepatitis B virus: effect of nucleotide substitutions on the clinical features of chronic hepatitis B. Med. Mol. Morphol., 39, 113–120 (2006).PubMedCrossRefGoogle Scholar
  149. Yoo, Y.C., Park, S. Y., Lee, K. B., and Azuma, I., MDP-Lys(L18), a synthetic muramyl dipeptide derivative, enhances antitumor activity of an inactivated tumor vaccine. J. Microbiol. Biotechnol., 10, 399–404 (2000).Google Scholar
  150. Zacks, S. I. and Sheff, M. F., Tetanism: pathobiological aspects of the action of tetanal toxin in the nervous system and skeletal mucle. Neurosci. Res., 3, 209–287 (1970).Google Scholar
  151. Zambon, M. C., Epidemiology and pathogenesis of influenza. J. Antimicrob. Chemother., 44(Suppl. B), 3–9 (1999).PubMedCrossRefGoogle Scholar
  152. Zhang, X. L., Jeza, V. T., and Pan, Q., Salmonella typhi: from a human pathogen to a vaccine vector. Cell Mol. Immunol., 5, 91–97 (2008).PubMedCrossRefGoogle Scholar
  153. Zimmerman, R. K., HPV vaccine and its recommendations. J. Fam. Pract., 56(2 Suppl. Vaccines), S1–S5 (2007).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2009

Authors and Affiliations

  • KyungDong Bae
    • 1
  • JunYoul Choi
    • 1
  • YangSuk Jang
    • 1
  • SangJeom Ahn
    • 1
  • ByungKi Hur
    • 2
  1. 1.Vaccine Research InstituteCrucellBerna Biotech KoreaYonginKorea
  2. 2.Department of Biotechnology and BioengineeringInha UniversityIncheonKorea

Personalised recommendations