Archives of Pharmacal Research

, Volume 32, Issue 3, pp 413–420

Inhibition of intestinal motility by the putative BKCa channel opener LDD175

  • Ike Campomayor dela Peña
  • Seo Young Yoon
  • Sung Mok Kim
  • Geum Seon Lee
  • Chul-Seung Park
  • Yong Chul Kim
  • Jae Hoon Cheong
Research Articles Drug Actions

Abstract

LDD175 (4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid) is a benzofuroindole compound characterized previously as a potent opener of the large conductance calcium activated (BKCa) channels. Activators of the BKCa channels are potential therapies for smooth muscle hyperactivity disorders. The present study investigates the influence of LDD175 on the mechanical activity of the ileum smooth muscle. LDD175 inhibited spontaneous contractions of the ileum in a concentration-dependent manner (pEC50=5.9 ± 0.1) (Emax=96 ± 1.0% at 100 μM, n=3). It also remarkably inhibited contractions due to acetylcholine (ACh) (pEC50=5.3 ± 0.1)(Emax=97.7 ± 2.3%, n=6) and electrical field stimulation (EFS) (pEC50=5.5 ± 0.1) (Emax=83.3 ± 6.0%, n=6). In strips precontracted by 20 mM KCl, LDD175 significantly reduced the contractions yielding a pEC50 of 6.1 ± 0.1 and Emax of 96.6 ± 0.9%, (n=6). In 60 mM KCl, a concentration-dependent inhibition was observed with respective pEC50 and Emax values of 4.1 ± 0.1 and 50.8 ± 5.0% (n=3). BKCa channel blockers iberiotoxin (IbTX) and tetraethylammonium chloride (TEA, 1 mM) attenuated the relaxative effect of LDD175 but not barium chloride (BaCl2), and glibenclamide (KIR and KATP channel blockers, respectively). These data demonstrate the antispasmodic activity of LDD175 attributable to the potentiation of the BKCa channels.

Key words

LDD175 Benzofuroindole BKCa Channels Ileum Antispasmodic IbTX 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, M., Brenner, R., and Atkinson, N., Tissue-specific expression of a drosophila calcium-activated potassium channel. J. Neurosci., 15, 6250–6259 (1995).PubMedGoogle Scholar
  2. Bergendal, A., Linden, A., Lotvall, J., Skoogh, B., and Lofdahl, C., Different effects of salmeterol, formoterol and salbutamol on cholinergic responses in the ferret trachea. Br. J. Pharmacol., 114(7), 1478–1482 (1995).PubMedGoogle Scholar
  3. Borrelli, F., Capasso, F., Capasso, R., Ascione, V., Aviello, G., Longo, R., and Izzo, A., Effect of Boswellia serrata on intestinal motility in rodents: inhibition of diarrhea without constipation. Br. Jour. Pharmacol., 148, 553–560 (2006).CrossRefGoogle Scholar
  4. Brayden, J. E., Potassium channels in vascular smooth muscle, Clin. Exp. Pharmacol. Physiol., 23, 1069–1076 (1996).PubMedCrossRefGoogle Scholar
  5. Butera, J. A., Antane, S. A., Hirth, B., Lennox, J. R., Sheldon, J. H., Norton, N. W., Warga, D., and Argentieri, T. M., Synthesis and potassium channel opening activity of substituted 10H-benzo[4,5]furo[3,2-b]indole- and 5,10-dihydro-indeno[1,2-b]indole-1-carboxylic acids. Bioorg. Med. Chem. Lett., 11, 2093–2097 (2001).PubMedCrossRefGoogle Scholar
  6. Calderone, V., Large-conductance, Ca(2+)-activated K(+) channels: function, pharmacology and drugs: Curr. Med. Chem. Bentham Science Publishers, IL, USA. pp. 1385–1395 (2002).Google Scholar
  7. Chang, C., Dworetzky S., Wang J., and Goldstein, M., Differential expression of the alpha and beta subunits of the large-conductance calcium-activated potassium channel: implication for channel diversity. Brain Res., Mol., 45, 33–40 (1997).CrossRefGoogle Scholar
  8. Chen, S., Inoue, R., and Ito, Y., Pharmacological characterization of muscarinic receptor-activated cation channels in guinea pig ileum. Br. J. Pharmacol, 109, 793–801 (1993).PubMedGoogle Scholar
  9. Coghlan, M. J., Carroll, W. A., and Gopalakrishnan, M., Recent developments in the biology and medicinal chemistry of potassium channel modulators; update from a decade of progress. J. Med. Chem., 44, 1627–1653 (2001).PubMedCrossRefGoogle Scholar
  10. Cook, N. S. and Quast, U., Potassium channel pharmacology. In Cook, N.S. (Eds) Potassium channels, structure, classification, function and therapeutic potential. Ellis Horwood, Chichester, pp. 181–255 (1990).Google Scholar
  11. Davies, M. P., McCurrie, J. R., and Wood, D., Comparative effects of K+ channel modulating agents on contractions of rat intestinal smooth muscle. Eur. J. Pharmacol, 297, 249–256(8) (1996).PubMedCrossRefGoogle Scholar
  12. Edwards, G. and Weston A. H., The pharmacology of ATP-sensitive potassium channels, Annu. Rev. Pharmacol. Toxicol., 33, 597–637 (1993).PubMedCrossRefGoogle Scholar
  13. Edwards, G., Niederste-Hollenberg, A., Schneider, J., Noack, T., and Weston, A., Ion channel modulation by NS1619, the putative BKCa channel opener, in vascular smooth muscle. Br. J. Pharmacol., 113, 1538–1547 (1994).PubMedGoogle Scholar
  14. Edwards, G. and Weston, A., Pharmacology of the potassium channel openers. Cardiovasc. Drugs Ther., 9, 185–193 (1995).PubMedCrossRefGoogle Scholar
  15. Fox, A. J., Barnes, P. J., Venkatesan, P., Belvisi, M. J., Activation of large conductance potassium channels inhibits the afferent and efferent function of airway sensory nerves in the guinea pig. J. Clin. Invest. 99(3), 513–519 (1997)PubMedCrossRefGoogle Scholar
  16. Galvez, A., Gimenez-Gallego, G., Reuben, J. P., Roy-Contancin, L., Feigenbaum, P., Kaczorowski, G., and Garcia, M. L., Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion buthus tamulus. J. Biol. Chem., 265, 11083–11090 (1990).PubMedGoogle Scholar
  17. Garcia, M. L. and Kaczorowski, G. J., Pharmacology of high-conductance Ca2+-activated potassium channels. In: Potassium Channels Cardiovascular Biology, (Ed.) Archer, S. L. and Rusch, N.J., New York: Kluwer Academic/Plenum Publishers, pp. 219–234 (2001).Google Scholar
  18. Gribkoff, V. K., Starrett, J. E. Jr., and Dworetzky, S. I., Maxi-K potassium channels: form, function, and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist, 7, 166–177 (2001).PubMedCrossRefGoogle Scholar
  19. Gormemis, A. E., Ha, T. S., Im, I., Jung, K. Y., Lee, J. Y., Park, C. S., and Kim, Y. C., Benzofuroindole analogues as potent BKCa channel openers. Chembiochem., 6, 1745–1748 (2005).PubMedCrossRefGoogle Scholar
  20. Hamilton, T. C., Weir, S. W., and Weston, T. H., Comparison of effects of BRL24915 and verapamil on electrical and mechanical activity in rat portal vein. Br. J. Pharmacol., 88, 103–111 (1986).PubMedGoogle Scholar
  21. Kaczorowski, G. and Garcia, M., Pharmacology of voltagegated and calcium-activated potassium channels. Curr. Opin. Investig. Drugs., 9, 2269–2280 (1999).Google Scholar
  22. Karaki, H., Ozaki, H., Hori, M., Mitsui-Saito, M., Amano, K., Harada, K., Miyamoto, S., Nakazawa, H., Won, K., and Sato, K., Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev., 49, 157–230 (1997).PubMedGoogle Scholar
  23. Kishii, K. I., Morimoto, T., Nakajima, N., Yamazaki, K., Tsujitani, M., and Takayagani, I., Effects of LP-805, a novel vasorelaxant agent, a potassium channel opener, on rat thoracic aorta. Gen. Pharmacol., 23, 347–353 (1992).PubMedGoogle Scholar
  24. Kobayashi, H., Adachi-Akahane, S., and Nagao, T., Involvement of BKCa channels in the relaxation of detrusor muscle via β-adrenoreceptors. Eur. J. Pharmacol., 404, 231–238 (2000).PubMedCrossRefGoogle Scholar
  25. Lawson, K. E., Potassium channel activation, a potential therapeutic approach?. Pharmacol. Ther., 70(1), 39–63 (1996).PubMedCrossRefGoogle Scholar
  26. Malysz, J., Buckner, S., Daza, A., Milicic, I., Perez-Medrano, A., and Gopalakrishnan, M., Functional characterization of large conductance calcium-activated K(+) channel openers in bladder and vascular smooth muscle. Naunyn-Schmiedeberg’s Arch Pharmaco., 369, 481–489 (2004).CrossRefGoogle Scholar
  27. Marty, A., Ca2+-dependent K+ channels with large unitary conductance in chromaffin cell membranes, Nature, 291, 497–500 (1981).PubMedCrossRefGoogle Scholar
  28. Quast, U., Guillon, J., and Cavero, I., Cellular pharmacology of potassium channel openers in vascular smooth muscle., Cardiovasc. Res., 28, 805–810 (1994).PubMedCrossRefGoogle Scholar
  29. Reimann, F. and Ashcroft, F. M., Inwardly rectifying potassium channels. Curr. Opin. Cell Biol., 11, 503–508 (1999).PubMedCrossRefGoogle Scholar
  30. Sheldon, J. H., Norton, N. W., and Argentieri, T. M., Inhibition of guinea pig detrusor contraction by NS-1619 is associated with activation of BKCa and inhibition of calcium currents. J. Pharmacol. Exp. Ther., 283, 1193–1200 (1997).PubMedGoogle Scholar
  31. Shieh C. C., Coghlan, M., Sullivan, J. P., and Gopalakrishnan, M., Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol. Rev., 52, 557–594 (2000).PubMedGoogle Scholar
  32. Sivarao, D. V., Newberry, K., Langdon, S., Lee, A. V., Hewawasam, P., Plym, M., Signor, L., Myers, R., and Lodge, N., Effect of BMS-223131 a novel opener of large conductance Ca2+-activated K+ (maxi-K) channels on normal and stress aggravated colonic motility and visceral nociception. J. Pharmacol. Exp. Ther. Fast Forward., (2005).Google Scholar
  33. Suarez-Kurtz, G., Garcia, M., and Kaczorowski, G., Effects of charybdotoxin and iberiotoxin on the spontaneous motility and tonus of different guinea pig smooth muscle tissues. J. Pharmacol. Exp. Ther., 269, 439 (1991).Google Scholar
  34. Tertyshnikova, S., Knox., R., Plym, M., Thalody, G., Griffin, C., Neelands, T., Harden, D., Signor, L., Weaver, D., Myers, R., and Lodge, N., BL-1249: A putative potassium channel opener with bladder relaxant properties. J. Pharmacol. Exp. Ther., 313, 250–259 (2004).PubMedCrossRefGoogle Scholar
  35. Toro, L., Wallner., M., Meera, P., and Tanaka, Y., Maxi-KCa, a unique member of the voltage-gated K+ channel superfamily. News Physiol Sci., 13, 112–117 (1998).PubMedGoogle Scholar
  36. Vergara, C., Latorre, R., Marrion, N., and Adelman, J., Calcium-activated potassium channels. Curr. Opin. Neurobiol., 8, 321–329 (1998).PubMedCrossRefGoogle Scholar
  37. Winquist, R., Heaney, L., Wallace, E., Baskin, R., Stein, R., and Garcia, M., Glyburide blocks the relaxation response to BRL 34915 (cromakalim), minoxidil sulfate and diazoxide in vascular smooth muscle. J. Pharmacol. Exp. Ther., 248, 149–156 (1989).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2009

Authors and Affiliations

  • Ike Campomayor dela Peña
    • 1
  • Seo Young Yoon
    • 1
  • Sung Mok Kim
    • 1
  • Geum Seon Lee
    • 1
  • Chul-Seung Park
    • 1
    • 2
  • Yong Chul Kim
    • 2
  • Jae Hoon Cheong
    • 1
  1. 1.College of PharmacySahmyook UniversitySeoulKorea
  2. 2.Department of Life ScienceGwangju Institute of Science and TechnologyGwangjuKorea

Personalised recommendations