Archives of Pharmacal Research

, Volume 32, Issue 1, pp 117–126 | Cite as

Biological characterization of long-term cultured human mesenchymal stem cells

  • Jiseon Kim
  • Jin Wook Kang
  • Jae Hyun Park
  • Youngju Choi
  • Kyung Suk Choi
  • Ki Dae Park
  • Dae Hyun Baek
  • Su Kyoung Seong
  • Hong-Ki Min
  • Hyung Soo Kim
Research Article Drug Efficacy and Safety

Abstract

Human mesenchymal stem cells (hMSCs) have generated a great deal of interest in clinical applications. The reason is that they may have the plasticity needed to differentiate into multiple lineages and the ability to expand ex vivo. For the therapeutic applications of hMSCs to be of practical use, it is crucial to assess the efficacy and safety of hMSCs in long-term ex vivo expansion. In this study, we cultured hMSCs by population doubling (PD) 60, and investigated their growth, osteogenic and adipogenic differential abilities, change of surface markers, telomerase activity, telomere length, and gene expression related to tumorigenesis. An in vivo tumorigenesis assay was also carried out. In long-term expanded hMSCs, the cells became aged above PD 30 and their adipogenic and osteogenic differentiation potential decreased. Telomerase activity unchanged whereas telomere length decreased and karyotypes were not changed. Gene expressions related to tumorigenesis decreased in proportion as the PD of hMSCs increased. In vivo transplantation of long-term cultured hMSCs to nude mice did not result in tumor formation. These findings suggest that diverse tests for cellular therapy should be considered during the ex vivo culture of hMSCs, particularly when a prolonged and extended propagation period is required.

Key words

Human mesenchymal stem cells (hMSCs) Efficacy Safety Long-term culture Ex vivo expansion Population doubling (PD) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, S., Nye, E., Chan, J., Loebinger, M., Spencer-Dene, B., Fisk, N., Stamp, G., Bonnet, D., and Janes, S. M., Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem cells, 25, 1586–1594 (2007).PubMedCrossRefGoogle Scholar
  2. Aue, G., Muralidhar, B., Schwartz, H. S., and Butler, M. G., Telomerase activity in skeletal sarcomas. Ann. Surg. Oncol., 5, 627–634 (1998).PubMedCrossRefGoogle Scholar
  3. Barry, F. P. and Murphy, J.M., Mesenchymal stem cells: clinical applications and biological characterization. The international journal of biochemistry and cell biology, 36, 568–584 (2004).CrossRefGoogle Scholar
  4. Baxter, M. A., Wynn, R. F., Jowitt, S. N., Wraith, J. E., Fairbairn, L. J., and Bellantuono, I., Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 22, 675–682 (2004).PubMedCrossRefGoogle Scholar
  5. Blackburn, E. H., Telomerases. Annu. Rev. Biochem., 61, 113–129 (1992).PubMedCrossRefGoogle Scholar
  6. Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., and Nikbin, B., Aging of mesenchymal stem cell in vitro. BioMed. Central., 7, 7–14, (2006).Google Scholar
  7. Chin, L., Artandi, S. E., Shen, Q., Tam, A., Lee, S. L., Gottlieb, G. J., Greider, C. W., and Depinho, R. A., p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell, 97, 527–538 (1999).PubMedCrossRefGoogle Scholar
  8. Deng, W., Obrocka, M., Fischer, I., and Prockop, D. J., In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun., 282, 148–152 (2001).PubMedCrossRefGoogle Scholar
  9. Devine, S. M. and Hoffman, R., Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr. Opin. Hematol., 7, 358–363 (2000).PubMedCrossRefGoogle Scholar
  10. Dexter, T. M. and Spooncer, E., Growth and differentiation in the hemopoietic system. Annu. Rev. Cell Biol., 3, 423–441 (1987).PubMedCrossRefGoogle Scholar
  11. Digirolamo, C. M., Stokes, D., Colter, D., Phinney, D. G., Class, R., and Prockop, D. J., Propagation and senescence of human marrow stromal cells in culture: A simple colonyforming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol., 107, 275–281 (1999).PubMedCrossRefGoogle Scholar
  12. Friedenstein, A. J., Gorskaja, J. F., and Kulagina, N. N., Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol., 4, 267–274 (1976).PubMedGoogle Scholar
  13. Friedenstein, A. J., Latzinik, N. W., Grosheva, A. G., and Gorskaya, U. F., Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp. Hematol., 10(2), 217–227 (1982).PubMedGoogle Scholar
  14. Greider, C. W., Telomerase activity, cell proliferation, and cancer. Proc. Natl. Acad. Sci. USA., 95, 90–92 (1998).PubMedCrossRefGoogle Scholar
  15. Harley, C. B., Futcher, A. B., and Greider, C. W., Telomeres shorten during aging of human fibroblasts. Nature, 345, 458–460 (1990).PubMedCrossRefGoogle Scholar
  16. Harley, C. B., Vaziri, H., Counter, C. M., and Allsopp, R. C., The telomere hypothesis of cellular aging. Exp. Gerontol., 27, 375–382 (1992).PubMedCrossRefGoogle Scholar
  17. Jaiswal, N., Haynesworth, E., Caplan, A. I., and Bruder, S. P., Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 64, 295–312 (1997).PubMedCrossRefGoogle Scholar
  18. Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., and Verfaillie, C. M., Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30, 896–904 (2002).PubMedCrossRefGoogle Scholar
  19. Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M., and Yoo, J. U., In vitro chondrogenesis of bone marrowderived mesenchymal progenitor cells. Exp. Cell Res., 238, 265–272 (1998).PubMedCrossRefGoogle Scholar
  20. Kaul, S. C. and Wadhwa, R., Aging of Cells in and outside the Body. Kuwer Academic Publishers, London, pp. 1–8, (2003).Google Scholar
  21. Kveiborg, M., Kassem, M., Langdahl, B., Eriksen, E. F., Clark, B. F., and Rattan, S. I., Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech. Aging Dev., 106, 261–271 (1999).PubMedCrossRefGoogle Scholar
  22. Lepperdinger, G., Brunauer, R., Jamnig, A., Laschober, G., and Kassem, M., Controversial issue: Is it safe to employ mesenchymal stem cells in cell-based therapies? Experimental Gerontology (2008).Google Scholar
  23. Lloyd, A. C., Limits to lifespan. Nat. Cell. Biol., 4, 25–27 (2002).CrossRefGoogle Scholar
  24. Mauney, J. R., Kaplan, D. L., and Volloch, V., Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. Biomaterials, 25, 3233–3243 (2004).PubMedCrossRefGoogle Scholar
  25. Noth, U., Osyczka, A. M., Tuli, R., Hickok, N. J., Danielson, K. G., and Tuan, R. S., Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J. Orthop. Res., 20, 1060–1069 (2002).PubMedCrossRefGoogle Scholar
  26. Parsch, D., Fellenberg, J., Brummendorf, T. H., Eschlbeck, A. M., and Richter, W., Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocyte. J. Mol. Med., 82, 49–55 (2004).PubMedCrossRefGoogle Scholar
  27. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147 (1999).PubMedCrossRefGoogle Scholar
  28. Purpura, K. A., Aubin, J. E., and Zandstra, P. W., Sustained in vitro expansion of bone progenitors is cell density dependent. Stem Cells, 22, 39–50 (2004).PubMedCrossRefGoogle Scholar
  29. Rubio, D., Garcia-Castro, J., Martín, M. C., de la Fuente, R., Cigudosa, J. C., Lloyd, A. C., and Bernad, A., Spontaneous human adult stem cell transformation. Cancer research, 65(8), 3035–3039 (2005).PubMedGoogle Scholar
  30. Rubio, D., Garcia, S., Paz, M. F., de la Cueva, T., Lopez-Fernandez, L. A., Lloyd, A. C., Garcia-Castro, J., and Bernad, A., Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS ONE, 3(1), e1398 (2008).PubMedCrossRefGoogle Scholar
  31. Shay, J. W. and Bacchetti, S., A survey of telomerase activity in human cancer. Eur. J. Cancer, 33, 787–791 (1997).PubMedCrossRefGoogle Scholar
  32. Shay, J.W., Zou, Y., Hiyama, E., and Wright, W. E., Telomerase and cancer. Hum. Mol. Genet., 10, 677–685 (2001).PubMedCrossRefGoogle Scholar
  33. Simonsen, J. L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S. I., Jensen, T. G., and Kassem, M., Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells, Nat. Biotechnol., 20, 592–596 (2002).PubMedCrossRefGoogle Scholar
  34. Stenderup, K., Justesen, J., Clausen, C., and Kassem, M., Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33, 919–926 (2003).PubMedCrossRefGoogle Scholar
  35. Tuli, R., Seghatoleslami, M. R., Tuli, S., Wang, M. L., Hozack, W. J., Manner, P. A., Danielson, K. G., and Tuan, R. S., A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol. Biotechnol., 23, 37–49 (2003).PubMedCrossRefGoogle Scholar
  36. Wakitani, S., Saito, T., and Caplan, A. I., Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 18, 1417–1426 (1995).PubMedCrossRefGoogle Scholar
  37. Wexler, S. A., Donaldson, C., Denning-Kendall, P., Rice, C., Bradley, B., and Hows, J. M., Adult bone marrow is a rich source of human mesenchymal ’stem’ cells but umbilical cord and mobilized adult blood are not. Br. J. Haematol., 121(2), 368–374 (2003).PubMedCrossRefGoogle Scholar
  38. Zimmermann, S., Voss, M., Kaiser, S., Kapp, U., Waller, C. F., and Martens, U. M., Lack of telomerase activity in human mesenchymal stem cells. Leukemia, 17, 1146–1149 (2003).PubMedCrossRefGoogle Scholar
  39. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., and Hedrick, M. H., Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell, 13, 4279–4295 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2009

Authors and Affiliations

  • Jiseon Kim
    • 1
  • Jin Wook Kang
    • 1
  • Jae Hyun Park
    • 1
  • Youngju Choi
    • 1
  • Kyung Suk Choi
    • 1
  • Ki Dae Park
    • 1
  • Dae Hyun Baek
    • 1
  • Su Kyoung Seong
    • 1
  • Hong-Ki Min
    • 1
  • Hyung Soo Kim
    • 1
  1. 1.Biotechnological Development Assistance Division, Pharmacological Research Department, National Institute of Toxicological ResearchKorea Food & Drug AdministrationSeoulKorea

Personalised recommendations