Archives of Pharmacal Research

, Volume 31, Issue 1, pp 75–82 | Cite as

Identification of estrogenic and antiestrogenic activities of respirable diesel exhaust particles by bioassay-directed fractionation



Bioassay-directed fractionation was performed to identify causative chemical groups of DEPs with estrogenic and antiestrogenic activities. Bioassay-directed fractionation consists of a cell bioassay (E-SCREEN) in conjunction with acid-base partitoning (F1 and F2) and silica gel column fractionation of neutral fractions (F3-F7). Crude extract (CE) of DEPs in dichloromethane (DCM) exhibited both estrogenic and antiestrogenic activity. Estrogenic activity of CE and some fractions (F1, F2, F3, F5 and F6) was induced through estrogen receptor (ER)-mediated pathways. In particular, the acid polar fraction (F2) of DEPs, which contains phenols, induced high levels of estrogenic activity compared to other fractions. The estrogenic activity of F2 (610.80 pg-bio-EEQ/g-DEPs) was higher than that of the total estrogenic activity of CE (222.22 pg-bio-EEQ/g-DEPs). This result indicates that the estrogenic activity induced by causative estrogenic fraction (F2) may be antagonized by unidentified chemicals in DEPs. On the other hand, non-polar fractions (F3 and F4) of DEPs include aliphatic and chlorinated hydrocarbon, polyaromatic hydrocarbons, and their alkyl derivatives, which play an important role in the antiestrogenic activity of DEPs. In particular, F4, which contains PAH and its derivatives, showed the highest antiestrogenic activity. Since in our previous study, dibenzo(a, h)anthracene and chrysene were identified in F4, and these chemicals have antiestrogenic activity, we assume that these chemicals are the major causative chemicals with antiestrogenic activity in DEPs. In contrast to the estrogenic activity of DEPs, antiestrogenic activity of CE was stronger than that of antiestrogenic fractions (F3 and F4) at non-cytotoxic concentrations, indicating that additive or synergistic effects by unidentified chemicals contained in DEPs occurred.

Key words

Diesel exhaust particles (DEPs) Bioassay-directed fractionation E-screen assay bio-EEQ Anti-/estrogenic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arcaro, K. F., O’Keefe, P. W., Yang, Y., Clayton, W., and Gierthy, J. F., Antiestrogenicity of environmental polycyclic aromatic hydrocarbons in human breast cancer cells. Toxicology, 133, 155–127 (1999).CrossRefGoogle Scholar
  2. Bayona, J. M., Markides, K. E., and Lee, M. L., Characterization of polar polycyclic aromatic compounds in a heavy-duty diesel exhaust particulate by capillary column gas chromatography and high-resolution mass spectrometry. Environ. Sci. Technol., 22, 1440–1447 (1988).CrossRefGoogle Scholar
  3. Buchanan, D. L., Sato, T., Peterson, R. E., and Cooke, P. S., Antiestrogenic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in mouse uterus: critical role of the aryl hydrocarbon receptor in stromal tissue, Toxicological Sciences, 57, 302–311 (2000).PubMedCrossRefGoogle Scholar
  4. Chaloupka, K., Krishnan, V., and Safe, S., Polynuclear aromatic hydrocarbon carcinogens as antiestrogens in MCF-7 human breast cancer cells: Role of the Ah receptor. Carcinogenesis, 13, 2233–2239 (1992).PubMedCrossRefGoogle Scholar
  5. Charles, G. D., Bartels, M. J., Zacharewski, T. R., Gollapudi, B. B., Freshour, E. W., and Carney, E. W., Activity of benzo(a)pyrene and its hydroxylated metabolites in an estrogen receptor-a reporter gene assay. Toxicological Sciences, 55, 320–326 (2000).PubMedCrossRefGoogle Scholar
  6. Clunies-Ross, C., Stanmore, B. R., and Millar, G. J., Dioxins in diesel exhaust, Nature (London), 381, 379 (1996).CrossRefGoogle Scholar
  7. Fertuck, K. C., Kumar, S., Sikka, H. C., Matthews, J. B., and Zacharewski, T. R., Interaction of PAH-related compounds with the a and b isoforms of the estrogen receptor. Toxicology letters, 121, 167–177 (2001).PubMedCrossRefGoogle Scholar
  8. Furuta, C., Suzuki, A. K., Taneda, S., Kamata, K., Hayashi, H., Mori, Y., Li, C., Watanabe, G., and Taya, K., Estrogenic activities of nitrophenols in diesel exhaust particles. Biology of Reproduction, 70, 1527–1533 (2004).PubMedCrossRefGoogle Scholar
  9. Gill, L., King, L., and Adonis, M., Trends of polycyclic aromatic hydrocarbon levels and mutagenicity in Santiago’s inhalable airborne particles in the period, 1992–1996. Inhalation Toxicology, 12, 1185–1204 (2000).CrossRefGoogle Scholar
  10. Gozgit, J. M., Nestor, K. M., Fasco, M. J., Pentecost, B. T., and Arcaro, K. F., Differential action of polycyclic aromatic hydrocarbons on endogenous estrogen-responsive genes and on a transfected estrogen-responsive reporter in MCF-7 cells. Toxicology and Applied Pharmacology, 196, 58–67 (2004).PubMedCrossRefGoogle Scholar
  11. Hanberg, A., Strahlberg, M., Georgellies, A., de Wit, C., and Ahlborg, U. G., Swedish dioxin survey: induction. Pharmacol Toxicol., 69, 442–449 (1991).PubMedGoogle Scholar
  12. Hashimoto, Y., Moriguchi, Y., Oshima, H., Kawaguchi, M., Miyazaki, K., and Nakamura, M., Measurement of estrogenic activity of chemicals for the development of new dental polymers. Toxicology In Vitro, 15, 421–425 (2001).PubMedCrossRefGoogle Scholar
  13. Higgins, K. J., Jung, H., Kittelson, D. B., Roberts, J. T., and Zachariah, M. R., Kinetics of diesel nanoparticle oxidation, Environ. Sci. Technol., 37, 179–190 (2003).CrossRefGoogle Scholar
  14. Kwon, S. B., Lee, K. W., Saito, K., Shinozaki, O., and Seto, T., Size-dependent volatility of diesel nanoparticles: Chassis dynamometer experiments. Environ. Sci. Technol., 37, 1794–1802 (2003).PubMedCrossRefGoogle Scholar
  15. Lewtas, J., Chuang, J., Nishioka, M., and Peterson B., Bioassay-directed fractionation of the organic extract of SRM1649 urban air particulate matter. Int. J. Environ. Anal. Chem., 39, 245–256 (1990).CrossRefGoogle Scholar
  16. Li, C., Takahashi, S., Taneda, S., Furuta, C., Watanabe, G., Suzuki, A. K., and Taya, K., Impairment of testicular function in adult male Japanese quail (Coturnix japonica) after a single administration of 3-methyl-4-nitrophenol in diesel exhaust particles. Journal of Endocrinology, 189, 555–564 (2006).PubMedCrossRefGoogle Scholar
  17. Machala, M., Ciganek, M., L., Bláha, L., Minksová, K., and Vondráèk, J., Aryl hydrocarbon receptor-mediated and estrogenic activities of oxygenated polycyclic aromatic hydrocarbons and azaarenes originally identified in extracts of river sediments. Environmental Toxicology and Chemistry, 20, 2736–2743 (2001).PubMedCrossRefGoogle Scholar
  18. Martin, M. B., Reiter, R., Pham, T., Avellanet, Y. R., Camara, J., Lahm, M., Pentecost, E., Pratap, K., Gilmore, B. A., Divekar, S., Dagata, R. S., Bull, J. L., and Stoica, A., Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology, 144, 2425–2436 (2003).PubMedCrossRefGoogle Scholar
  19. Meek, M. D., Ah receptor and estrogen receptor-dependent modulation of gene expression by extracts of diesel exhaust particles. Environ. Res. Section A, 79, 114–121 (1998).CrossRefGoogle Scholar
  20. Mori, Y., Taneda, S., Hayashi, H., Sakushima, A., Kamata, K., Suzuki, A.K., Yoshino, S., Sakata, M., Sagai, M., and Seki, K., Estrogenic activities of chemicals in diesel exhaust particles. Bio. Pharm. Bull., 25, 145–146 (2002).CrossRefGoogle Scholar
  21. Navas, J. M. and Segner, H., Antiestrogenic activity of anthropogenic and natural chemicals. Environ. Sci. Pollut. Res., 5, 75–82 (1998).Google Scholar
  22. Noguchi, K., Toriba, A., Chung, S. W., Kizu, R., and Hayakawa, K., Identification of estroenic/anti-estrogenic compounds in diesel exhaust particulate extract. Biomedial Chromatography, 21, 1135–1142 (2007).CrossRefGoogle Scholar
  23. Oenga, G. N., Spink, D. C., and Carpenter, D. O., TCDD and PCBs inhibit breast cancer cell proliferation in vitro. Toxicology In Vitro, 18, 811–819 (2004).PubMedCrossRefGoogle Scholar
  24. Oh, S. M. and Chung, K. H., Identification of mammalian cell genotoxins in respirable diesel exhaust particles by bioassay-directed chemical analysis. Toxicology Letters, 161, 226–235 (2006).PubMedCrossRefGoogle Scholar
  25. Olea, N., Pulgar, R., Perez, P., Olea-Serrano, F., Rivas, A., Novillo-Fertrell, A., Pedraza, V., Soto, A. M., and Sonnenschein, C., Estrogenicity of resin-based composities and sealants used in dentistry. Environ. Health Perspect., 104, 298–305 (1996).PubMedCrossRefGoogle Scholar
  26. Perez, P., Pulgar, R., Olea-Serrano, F., Villalobos, M., Rivas, A., Metzler, M., Pedraza, V., and Olea, N., The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxyl group. Environ. Health Perspect., 106, 167–174 (1998).PubMedCrossRefGoogle Scholar
  27. Plíšková, M., Vondráèek, J., Vojtìšek, B., Kozubík, A., and Machala, M., Deregulation of cell proliferation by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events. Toxicological Sciences, 83, 246–256 (2005).PubMedCrossRefGoogle Scholar
  28. Safe, S., Dietary and environmental estrogens and antiestrogens and their possible role in human disease. Environ. Sci. Pollut. Res., 1, 29–33 (1994).Google Scholar
  29. Safe, S., Modulation of gene expression and endocrine response pathways by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds, Pharmacol. Ther., 67, 247–281 (1995).PubMedCrossRefGoogle Scholar
  30. Safe, S., Interactions between hormone and chemicals in breast cancer. Annu. Rev. Pharmacol. Toxicol., 38, 121–158 (1998).PubMedCrossRefGoogle Scholar
  31. Safe, S., Astroff, B., Harris, M., Zacharewski, T., Dickerson, R., Romkes, M., and Biegel, L., 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds as antioestrogens: characterization and mechanisms of action. Pharmacol. Toxicol., 69, 400–409 (1991).PubMedCrossRefGoogle Scholar
  32. Safe, S. and Wörmke, M., Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action. Chem. Res. Toxicol., 16, 807–816 (2003).PubMedCrossRefGoogle Scholar
  33. Schuetzle, D. and Lewtas, J., Bioassay-directed chemical analysis in environmental research. Anal. Chem., 58, 1060A–1075A (1986).PubMedCrossRefGoogle Scholar
  34. Taneda, S., Hayashi, H., Sakushima, A., Seki, K., Suzuki, A.K., Kamata, K., Sakata, M., Yoshino, S., Sagai, M., and Mori, Y., Estrogenic and anti-estrogenic activities of two types of diesel exhaust particles. Toxicology, 170, 153–161 (2002).PubMedCrossRefGoogle Scholar
  35. Taneda, S., Mori, Y., Kamata, K., Hayashi, H., Furuta, C., Li, C., Seki, K., Sakushima, A., Yoshino, S., Yamaki, K., Watanabe, G., Taya, K., and Suzuki, A. K., Estrogenic and anti-estrogenic activity of nitrophenols in diesel exhaust particles (DEP). Biol. Pharm. Bull., 27, 835–837 (2004).PubMedCrossRefGoogle Scholar
  36. Topinka, J., Schwarz, L. R., Kiefer, F., Wiebel, F. J., Gajdoš, O., Vidová, P., Dobiáš, L., Fried, M., Šrám, R.J., and Wolff, T., DNA adduct formation in mammalian cell cultures by polycyclic aromatic hydrocarbons (PAH) and nitro-PAH in coke oven emission extract. Mutation Research, 419, 91–105 (1998).PubMedGoogle Scholar
  37. Tran, D. Q., Ide, C. F., McLachlan, J. A., and Arnold, S. F., The anti-estrogenic activity of selected polynuclear aromatic hydrocarbons in yeast expressing human estrogen receptor. Biochemical and Biophysical Research Communications, 229, 102–108 (1996).CrossRefGoogle Scholar
  38. Tsukue, N., Toda, N., Tsubone, H., Sagai, M., Jin, W. Z., Watanabe, G., Taya, K., Birumachi, J., and Suzuki, A. K., Diesel exhaust (DE) affects the regulation of testicular function in male Fishcher 344 rats. J. Toxicol Environ Health, A63, 115–126 (2001).CrossRefGoogle Scholar
  39. Tsukue, N., Tsubone, H., and Suzuki, A. K., Diesel exhaust affects the abnormal delivery in pregnant mice and the growth of their young. Inhal. Toxicol., 14, 635–651 (2002).PubMedCrossRefGoogle Scholar
  40. U.S. Environmental Protection Agency (EPA), 2002. Health assessment document for diesel engine exhaust, Prepared by the National Center for Environmental Assessment, Washington, DC, for the Office of Transportation and Air Quality; EPA/600/8-90/057F.Google Scholar
  41. Vondráèek, J., Kozubík, A., and Machala, M., Modulation of estrogen receptor-dependent reporter construct activation and G0/G1-S-phase transition by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells. Toxicological Sciences, 70, 193–201 (2002).CrossRefGoogle Scholar
  42. Wang, W. L., Smith, R., and Safe, S., Aryl hydrocarbon receptor-mediated antiestrogenicity in MCF-7 cells: Modulation of hormone-induced cell cycle enzymes. Arch. Biochem. Biophys., 356, 239–248 (1998).PubMedCrossRefGoogle Scholar
  43. Watanabe, N. and Oonuke, Y., Inhalation of diesel engine exhaust affects spermatogenesis in growing male rats. Environ. Health Perspect., 107, 539–544 (1999).PubMedCrossRefGoogle Scholar
  44. Yoshida, S., Sagai, M., Oshio, S., Umeda, T., Ihara, T., Sugamata, M., Sugawara, I., and Takada, K., Exposure to diesel exhaust affects the male reproductive system of mice. Int. J. Androl., 22, 307–315 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Seung Min Oh
    • 1
  • Byung Taek Ryu
    • 1
  • Kyu Hyuck Chung
    • 1
  1. 1.College of PharmacySungkyunkwan UniversityGyeonggi-doKorea

Personalised recommendations