Archives of Pharmacal Research

, 31:1281

Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells

Research Article Drug Efficacy and Safety


To explore the anticancer effects of the flavonoid quercetin on human breast cancer MDA-MB-453 cells via cell cycle regulation and the induction of apoptosis, the antiproliferative effect of quercetin was first examined by MTT assay. When MDA-MB-453 cells were treated with quercetin for various periods of time (3–24 hrs) and at various doses (1–100 μM), cell growth decreased significantly in a time-and dose-dependent manner. To elucidate the mechanism underlying the antiproliferative effect of quercetin, cell cycle progression and the induction of apoptosis in MDA-MB-453 cells exposed to 100 μM quercetin for 24 hrs were investigated. Quercetin caused a remarkable increase in the number of sub-G1 phase cells, and an Annexin-V assay revealed that exposure to quercetin affected apoptosis. Moreover, treatment with quercetin increased Bax expression but decreased Bcl-2 expression. Cleaved caspase-3 and PARP expression was also increased by quercetin. Thus, quercetin has probable anticancer activity. Our results suggest the existence of multiple pathways for the induction of cell cycle arrest and apoptosis by quercetin.

Key words

Apoptosis Cell cycle arrest Human breast cancer MDA-MB-453 cells Quercetin 


  1. Abu-Qare, A. W. and Abou-Donia, M. B., Biomarkers of apoptosis: Release of cytochrome c, activation of caspase-3, induction of 8-hydroxy-2′-deoxyguanosine, increased 3-nitrotyrosine, and alteration of p53 gene. J. Toxicol. Environ. Health B Crit. Rev., 4, 313–332 (2001).PubMedCrossRefGoogle Scholar
  2. Agarwal, M. L., Agarwal, A., Taylor, W. R., and Stark, G. R., p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Nati. Acad. Sci. USA., 92, 8493–8497 (1995).CrossRefGoogle Scholar
  3. Alcocer, F., Whitley, D., Salazar-Gonzalez, J. F., Jordan, W. D., Sellers, M. T., Eckhoff, D. E., Suzuki, K., Macrae, C., and Bland, K. I., Quercetin inhibits human vascular smooth muscle cell proliferation and migration. Surgery, 131, 198–204 (2002).PubMedCrossRefGoogle Scholar
  4. Chang, Y. F., Chi, C. W., and Wang, J. J., Reactive oxygen species production is involved in quercetin-induced apoptosis in human hepatoma cells. Nutr. Cancer, 55, 201–209 (2006).PubMedCrossRefGoogle Scholar
  5. Choi, E. J., Chee, K. M., and Lee, B. H., Anti-and prooxidant effects of chronic quercetin administration in rats. Eur. J. Pharmacol., 482, 281–285 (2003).PubMedCrossRefGoogle Scholar
  6. Collins, A. R., Antioxidant intervention as a route to cancer prevention. Eur. J., 41, 1923–1930 (2005).Google Scholar
  7. Cotelle, N., Role of flavonoids in oxidative stress. Curr. Top. Med. Chem., 1, 569–590 (2001).PubMedCrossRefGoogle Scholar
  8. Frankel, E. N., Kanner, J., German, J. B., Parks, E., and Kinsella, J. E., Inhibition of oxidation of human lowdensity lipoprotein by phenolic substances in red wine. Lancet, 341, 454–457 (1993).PubMedCrossRefGoogle Scholar
  9. Hertog, M. G., Bueno-de-Mesquita, H. B., Fehily, A. M., Sweetnam, P. M., Elwood P. C., and Kromhout, D., Fruit and vegetable consumption and cancer mortality in the Caerphilly Study. Cancer Epidemiol. Biomark. Prev., 5, 673–677 (1996).Google Scholar
  10. Hertog, M. G., Epidemiological evidence on potential health properties of flavonoids. Proc. Nutr. Soc., 55, 385–397 (1996).PubMedCrossRefGoogle Scholar
  11. Hertog, M. G., Hollman, P. C., Katan, M. B., and Kromhout, D., Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr. Cancer, 20, 21–29 (1993).PubMedCrossRefGoogle Scholar
  12. Huang, S. L., Hsu, C. L., and Yen, G. C., Growth inhibitory effect of quercetin on SW 872 human liposarcoma cells. Life Sci., 79, 203–209 (2006).PubMedCrossRefGoogle Scholar
  13. Kandaswami, C. and Middleton, E. Jr., Free radical scavenging and antioxidant activity of plant flavonoids. Adv. Exp. Med. Biol., 366, 351–376 (1994).PubMedGoogle Scholar
  14. Kandaswami, C., Lee, L. T., Lee, P. P., Hwang, J. J., Ke, F. C., Huang, Y. T., and Lee, M. T., The antitumor activities of flavonoids. In Vivo, 19, 895–909 (2005).PubMedGoogle Scholar
  15. Kim, W. K., Bang, M. H., Kim, E. S., Kang, N. E., Jung, K. C., Cho, H. J., and Park, J. H., Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J. Nutr. Biochem., 16, 155–162 (2005).PubMedCrossRefGoogle Scholar
  16. Kook, D., Wolf, A. H., Yu, A. L., Neubauer, A. S., Priglinger, S. G., Kampik, A., and Welge-Lüssen, U. C., The protective effect of quercetin against oxidative stress in the human RPE in Vitro. Invest. Ophthalmol. Vis. Sci., 49, 1712–1720 (2008).PubMedCrossRefGoogle Scholar
  17. Kris-Etherton, P. M. and Keen, C. L., Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health. Curr. Opin. Lipidol., 13, 41–49 (2002).PubMedCrossRefGoogle Scholar
  18. Lamson, D. W. and Brignall, M. S., Antioxidants and cancer, part 3: quercetin. Altern. Med. Rev., 5, 196–208 (2000).PubMedGoogle Scholar
  19. Lepik, D., Jaks, V., Kadaja, L., Varv, S., and Maimets, T., Electroporation and carrier DNA cause p53 activation, cell cycle arrest, and apoptosis. Anal. Biochem., 318(1), 52–59 (2003).PubMedCrossRefGoogle Scholar
  20. Lim, J. H., Park, J. W., Min, D. S., Chang, J. S., Lee, Y. H., Park, Y. B., Choi, K. S., and Kwon, T. K., NAG-1 up-regulation mediated by EGR-1 and p53 is critical for quercetin-induced apoptosis in HCT116 colon carcinoma cells. Apoptosis, 12, 411–421 (2007).PubMedCrossRefGoogle Scholar
  21. Liu, H., Zhang, C., and Zeng, W., Estrogenic and antioxidant effects of a phytoestrogen daidzein on ovarian germ cells in embryonic chickens. Domest. Anim. Endocrinol., 31, 258–268 (2006).PubMedCrossRefGoogle Scholar
  22. Lopez-Lazaro, M., Flavonoids as anticancer agents: structureactivity relationship study. Curr. Med. Chem. Anticancer Agents., 2, 691–714 (2002).PubMedCrossRefGoogle Scholar
  23. Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaité, E., and Segura-Aguilar, J., Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic. Biol. Med., 26, 107–116 (1999).PubMedCrossRefGoogle Scholar
  24. Notoya, M., Tsukamoto, Y., Nishimura, H., Woo, J. T., Nagai, K., Lee, I. S., and Hagiwara, H., Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur. J. Pharmacol., 48, 89–96 (2004).CrossRefGoogle Scholar
  25. Oakea, S. A., Lin, S. S., and Bassik, M. C., The control of endoplasmic reticulum-initiated apoptosis by the BCL-2 family of proteins. Curr. Mol. Med., 6, 99–109 (2006).CrossRefGoogle Scholar
  26. Park, M., Chae, H. D., Yun, J., Jung, M., Kim, Y. S., Kim, S. H., Han, M. H., and Shin, D. Y., Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest. Cancer Res., 60, 542–545 (2000).PubMedGoogle Scholar
  27. Parker, M. A., Anderson, J. K., Corliss, D. A., Abraria, V. E., Sidman, R. L., Park, K. I., Teng, Y. D., Cotanche, D. A., and Snyder, E. Y., Expression profile of an operationallydefined neural stem cell clone. Exp. Neurol., 194, 320–332 (2005).PubMedCrossRefGoogle Scholar
  28. Pathak, S. K., Sharma, R. A., and Mellon, J. K., Chemoprevention of prostate cancer by diet-derived antioxidant agents and hormonal manipulation (Review). Int. J. Oncol., 22, 5–13 (2003).PubMedGoogle Scholar
  29. Porter, A. G. and Janicke, R. U., Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 6, 99–104 (1999).PubMedCrossRefGoogle Scholar
  30. Ramos, A. A., Lima, C. F., Pereira, M. L., Fernandes-Ferreira, M., and Pereira-Wilson, C., Antigenotoxic effects of quercetin, rutin and ursolic acid on HepG2 cells: evaluation by the comet assay. Toxicol. Lett., 177, 66–73 (2008).PubMedCrossRefGoogle Scholar
  31. Rao, A. V. and Agarwal, S., Role of antioxidant lycopene in cancer and heart disease. J. Am. Coll. Nutr., 19, 563–569 (2000).PubMedGoogle Scholar
  32. Ren, W., Qiao, Z., Wang, H., Zhu, L., and Zhang, L., Flavonoids: Promising anticancer agents. Med. Res. Rev., 23, 519–534 (2003).PubMedCrossRefGoogle Scholar
  33. Russo, G. L., Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem. Pharmacol., 74, 533–544 (2007).PubMedCrossRefGoogle Scholar
  34. Sahu, S. C. and Gray, G. C., Pro-oxidant activity of flavonoids: Effects on glutathione and glutathione S-transferase in isolated rat liver nuclei. Cancer Lett., 104, 193–196 (1996).PubMedCrossRefGoogle Scholar
  35. Shen, S. C., Chen, Y. C., Hsu, F. L., and Lee, W. R., Differential apoptosis-inducing effect of quercetin and its glycosides in human promyeloleukemic HL-60 cells by alternative activation of the caspase 3 cascade. J. Cell Biochem., 89, 1044–1055 (2003).PubMedCrossRefGoogle Scholar
  36. Singh, R. P. and Agarwal, R., Natural flavonoids targeting deregulated cell cycle progression in cancer cells. Curr. Drug Targets., 7, 345–354 (2006).PubMedCrossRefGoogle Scholar
  37. van Delft, M. F. and Huang, D. C., How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res., 16, 203–213 (2006).PubMedCrossRefGoogle Scholar
  38. Zhang, J., Stanley, R. A., Adaim, A., Melton, L. D., and Skinner, M. A., Free radical scavenging and cytoprotective activities of phenolic antioxidants. Mol. Nutr. Food Res., 50, 996–1005 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Eun Jeong Choi
    • 2
  • Su Mi Bae
    • 2
  • Woong Shick Ahn
    • 1
    • 2
  1. 1.Department of Obstetrics and Gynecology, College of MedicineThe Catholic University of KoreaSeoulKorea
  2. 2.Cancer Research InstituteThe Catholic University of KoreaSeoulKorea

Personalised recommendations