Archives of Pharmacal Research

, Volume 31, Issue 9, pp 1153–1159 | Cite as

Synergistic immunostimulating activity of pidotimod and red ginseng acidic polysaccharide against cyclophosphamide-induced immunosuppression

  • Xiao Fei Du
  • Cheng Zhe Jiang
  • Chun Fu Wu
  • Eun Kyung Won
  • Se Young ChoungEmail author
Research Articles Drug Efficacy and Safety


We investigated the synergistic effect of combined treatment with red ginseng acidic polysaccharide (RGAP) from Panax ginseng C.A. Meyer and pidotimod in cyclophosphamide-treated mice. The combination of pidotimod and RGAP restored concanavalin A-induced splenic T cell proliferation and LPS-stimulated B cell proliferation significantly. The production of nitric oxide from peritoneal macrophages was increased by the combinations. NK cell activity was increased by RGAP alone or in combination with pidotimod. A synergistic increase in the level of serum IL-12 and interferongamm was observed when the combination of the two was used. RGAP alone or in combination with pidotimod modulated the level of serum C-reactive protein to a near-normal level. These results indicate that combinations of pidotimod and RGAP are synergistic and suggest that combination therapy using pidotimod and RGAP for improving immune activity may provide an additional benefit over the use of the two drugs by themselves.

Key words

Panax ginseng C.A. Meyer Red ginseng acidic polysaccharide Pidotimod Cyclophosphamide Immunostimulation Combination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H., Arichi, S., Hayashi, T., and Odashima, S., Ultrastructural studies of Morris hepatoma cells reversely transformed by ginsenosides. Experientia, 35, 1647–1649 (1979).PubMedCrossRefGoogle Scholar
  2. An, H. J., Jeong H. J., Um J. Y., Kim H. M., and Hong S. H., Glechoma hederacea inhibits inflammatory mediator release in IFN-gamma and LPS-stimulated mouse peritoneal macrophages. J. Ethnopharmacol, 106, 418–424 (2006).PubMedCrossRefGoogle Scholar
  3. Barron, M. G., Heintz, R., and Krahn, M. M., Contaminant exposure and effects in pinnipeds: implications for Steller sea lion declines in Alaska. Sci. Total Environ., 311, 111–133 (2003).PubMedCrossRefGoogle Scholar
  4. Bogdan, C, Rollinghoff, M., and Diefenbach, A., The role of nitric oxide in innate immunity. Immunol. Rev., 173, 17–26 (2000).PubMedCrossRefGoogle Scholar
  5. Byun, J. A., Ryu, M. H., and Lee, J. K., The immunomodulatory effects of 3-monochloro-1,2-propanediol on murine splenocyte and peritoneal macrophage function in vitro. Toxicol. In Vitro, 20, 272–278 (2006).PubMedCrossRefGoogle Scholar
  6. Cerqueira, F., Cordeiro-Da-Silva, A., Gaspar-Marques, C., Simoes, F., Pinto M. M., and Nascimento M. S., Effect of abietane diterpenes from Plectranthus grandidentatus on T-and B-lymphocyte proliferation. Bioorg. Med. Chem., 12, 217–223 (2004).PubMedCrossRefGoogle Scholar
  7. Chen, Z. Q., Shang, X. J., Ye, Z. Q., Lu, F. E., and Huang, G. Y., Efficacy of traditional Chinese medicine and Western medicine in the treatment of Ureaplasma urealyticun and Chlamydia trachomatis infectious chronic prostatitis (report of 48 cases). Zhonghua Nan Ke Xue, 9, 202–206 (2003).PubMedGoogle Scholar
  8. Coppi, G. and Manzardo, S., Experimental immunological screening tests on pidotimod. Arzneimittelforschung, 44, 1411–1416 (1994).PubMedGoogle Scholar
  9. Crimella, T., Orlandi, R., Bocchiola, G., Anders, U., and Stradi, R., Analytical and chemical profile of pidotimod. Arzneimittelforschung, 44, 1405–1410 (1994).PubMedGoogle Scholar
  10. Eun, S. M., Hung, N. K., Nam, L. K., and Cheung, K. Y., Growth promoting activities of a macromolecular fraction from fresh ginseng. Korean J. Ginseng Sci., 13, 215–221 (1989).Google Scholar
  11. Feng, T. Y., Taking the road of combining traditional Chinese and western medicine. Chin Med J (Engl), 3, 8–12 (1977).Google Scholar
  12. Friedl, R., Moeslinger, T., Kopp, B., and Spieckermann P. G., Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells. Br. J. Pharmacol., 134, 1663–1670 (2001).PubMedCrossRefGoogle Scholar
  13. Gordon, S., The role of the macrophage in immune regulation. Res. Immunol., 149, 685–688 (1998).PubMedCrossRefGoogle Scholar
  14. Huang, Y. S., Effect of ginsenosides Rb1 and Rg1 on lipid peroxidation of rat in vitro. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 11, 460–462 (1989).PubMedGoogle Scholar
  15. Kim, Y. S., Kang, K. S., and Kim, S. I., Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: Comparison of effects of meutral and acidic polysaccharide fraction. Arch. Plarm. Res., 13, 330–336 (1990).CrossRefGoogle Scholar
  16. Komutarin, T., Azadi, S., Butterworth, L., Keil, D., Chitsomboon, B., Suttajit, M., and Meade, B. J., Extract of the seed coat of Tamarindus indica inhibits nitric oxide production by murine macrophages in vitro and in vivo. Food Chem. Toxicol., 42, 649–658 (2004).PubMedCrossRefGoogle Scholar
  17. Konno, C., Murakami, M., Oshima, Y., and Hikino, H., Isolation and hypoglysemic activity of panaxans Q,R,S,T and U,glycans of Panax ginseng roots. J. Ethnopharmacol, 69–74 (1985).Google Scholar
  18. Konno, C., Sugiyama, K., Kano, M., Takahashi, M., and Hikino, H., Isolation and hypoglycemic activity of panaxans A,B,C,D and E,glycans of Panax ginseng roots. Planta Medica, 434–436 (1983).Google Scholar
  19. Kroncke, K. D., Fehsel, K., and Kolb-Bachofen, V., Inducible nitric oxide synthase in human diseases. Clin. Exp. Immunol., 113, 147–156 (1998).PubMedCrossRefGoogle Scholar
  20. Kyeong, M. P., Tae, C. J., Young, S. K., Han, J. S., Ki, Y. N., and Jong, D. P., Immunomodulatory effect of acidic polysaccharide fraction from Korean red ginseng (Panax ginseng). Natural Product Sciences, 6, 31–35 (2000).Google Scholar
  21. Lee, Y. S., Chung, I. S., Lee, I. R., Kim, K. H., Hong, W. S., and Yun, Y. S., Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res., 323–331 (1997).Google Scholar
  22. Li, Y. Ma, X., Qu, S., Wang, L., Du, B., and Wei, Z., Effect of CPPQ (coarse polysaccharide from Panax quinquefolium) on immunologic function of immunosuppressive mice induced with cyclophosphamide. Baiqiuen Yike Daxue Xuebao, 137–139 (1996).Google Scholar
  23. Lim, T. S., Na, K., Choi, E. M., Chung, J. Y., and Hwang, J. K., Immunomodulating activities of polysaccharides isolated from Panax ginseng. J. Med. Food, 7, 1–6 (2004).PubMedCrossRefGoogle Scholar
  24. Lind, L., Circulating markers of inflammation and atherosclerosis. Atherosclerosis, 169, 203–214 (2003).PubMedCrossRefGoogle Scholar
  25. Liu, L. M., Establishment and development of clinical theory for integration of traditional Chinese and western medicine. Zhong Xi Yi Jie He Xue Bao, 1, 244–246 (2003).PubMedCrossRefGoogle Scholar
  26. Magni, A., Signorelli, G., and Bocchiola, G., Synthesis and preliminary pharmacological evaluation of pidotimod, its enantiomer, diastereomers and carboxamido derivatives. Arzneimittelforschung, 44, 1402–1404 (1994).PubMedGoogle Scholar
  27. Mahiou, J., Walter, U., Lepault, F., Godeau, F., Bach, J. F., and Chatenoud, L., In vivo blockade of the Fas-Fas ligand pathway inhibits cyclophosphamide-induced diabetes in NOD mice. J. Autoimmun., 16, 431–440 (2001).PubMedCrossRefGoogle Scholar
  28. Migliorati, G., Nicoletti, I., and Riccardi, C., Immunomodulating activity of pidotimod. Arzneimittelforschung, 44, 1421–1424 (1994).PubMedGoogle Scholar
  29. Moon, C. K., Sim, K. S., Lee, S. H., Park, K. S., Yun, Y. P., Ha, B. J., and Lee, C. C., Antitumor activity of some phytobased polysaccharides and their effects on the immune function. Arch. Pharm. Res., 123–129 (1983).Google Scholar
  30. Petros, A., Lamb, G., Leone, A., Moncada, S., Bennett, D., and Vallance, P., Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc. Res., 28, 34–39 (1994).PubMedCrossRefGoogle Scholar
  31. Rollinghoff, M., Starzinski-Powitz, A., Pfizenmaier, K., and Wagner, H., Cyclophosphamide-sensitive T lymphocytes suppress the in vivo generation of antigen-specific cytotoxic T lymphocytes. J. Exp. Med., 145, 455–459 (1977).PubMedCrossRefGoogle Scholar
  32. Santosuosso, M., Divangahi, M., Zganiacz, A., and Xing, Z., Reduced tissue macrophage population in the lung by anticancer agent cyclophosphamide: restoration by local granulocyte macrophage-colony-stimulating factor gene transfer. Blood, 99, 1246–1252 (2002).PubMedCrossRefGoogle Scholar
  33. Shin, H. J., Kim, Y. S., Kwak, Y. S., Song, Y. B., Kim, Y. S., and Park, J. D., Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP). Planta Med, 70, 1033–1038 (2004).PubMedCrossRefGoogle Scholar
  34. Sun, X. B., Matsumoto, T., Kiyohara, H., Hirano, M., and Yamada, H., Cytoprotective activity of pectic polysaccharides from the root of panax ginseng. J. Ethnopharmacol., 31, 101–107 (1991).PubMedCrossRefGoogle Scholar
  35. Wang, X. L. and Zhou, Y. H., Comments on treatment of severe acute respiratory syndrome by integrated traditional Chinese and western medicine. Zhong Xi Yi Jie He Xue Bao, 1, 155–157 (2003).PubMedCrossRefGoogle Scholar
  36. Wu, F. E. and Wu, W., Development of new Chinese medicine with 〈combinatorial Chinese medicine〉. Natural Product Research and Development, 14, 66–69 (2002).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Xiao Fei Du
    • 1
  • Cheng Zhe Jiang
    • 1
    • 2
  • Chun Fu Wu
    • 1
  • Eun Kyung Won
    • 1
    • 2
  • Se Young Choung
    • 1
    • 2
    Email author
  1. 1.Department of PharmacologyShenyang Pharmaceutical UniversityShenyangChina
  2. 2.Department of Hygienic Chemistry and Kyung Hee East-West Pharmaceutical Research Institute, College of PharmacyKyung Hee UniversitySeoulKorea

Personalised recommendations