Archives of Pharmacal Research

, Volume 31, Issue 8, pp 1016–1022 | Cite as

New antimicrobial drug resistance and epidemiological typing patterns of Staphylococci from clinical isolates and raw meats

  • Do Kyung Lee
  • Jae Ung Hwang
  • Eun Hye Baek
  • Kang Oh Lee
  • Kyung Jae Kim
  • Nam Joo Ha
Research Articles Drug Efficacy and Safety


The antimicrobial susceptibilities of Staphylococcus isolated from clinical isolates and raw meats were tested for six different antimicrobial agents that are in widespread clinical use in Korea and four new antimicrobials, linezolid, quinupristin/dalfopristin, daptomycin, and tigecycline. And this study analyzed the mecA genes and genetic patterns of MRSA by performing epidemiological studies using the PCR method. 46%, 51%, and 79% of clinical isolates were identified as MRSA in 1998, 1999, and 2005, respectively, and the mecA gene was detected in 82% of these isolates. Of the 133 staphylococci isolated from raw meats, 18% of the isolates were found to be resistant to methicillin, but none of these isolates showed the presence of the mecA gene. New antimicrobials, which have rarely or not yet been used in Korean hospitals, showed high activity against all staphylococcal isolates including methicillinresistant isolates. The randomaly amplified polymorphic DNA (RAPD) patterns of MRSA isolates differed significantly between clinical isolates and raw meat isolates.

Key words

Daptomycin Linezolid mecA Gene Methicillin-resistant Staphylococcus aureus (MRSA) Quinupristin/dalfopristin Tigecycline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abuin, C. M. F., Fernandez, E. J. Q., Sampayo, C. F., Otero, J. L. R., Rodriguez, L. D., and Saez, A. C., Susceptibilities of Listeria species isolated from food to nine antimicrobial agents. Antimicrob. Agents Chemother., 38, 1655–1657 (1994).Google Scholar
  2. Bhateja, P., Purnapatre, K., Dube, S., Fatma, T., and Rattan, A., Characterisation of laboratory-generated vancomycin intermediate resistant Staphylococcus aureus strains. Int. J. Antimicrob. Agent, 27, 201–211 (2006).CrossRefGoogle Scholar
  3. Bradley, S. F., Methicillin-resistant Staphylococcus aureus: long-term care concerns. Am. J. Med., 106, 2–10 (1999).CrossRefGoogle Scholar
  4. Brun-Buisson, C., Methicillin-resistant Staphylococcus aureus: evolution and epidemiology, clinical impact, and prevention. Pathol. Biol., 46, 227–234 (1998).PubMedGoogle Scholar
  5. Clinical Laboratory and Standards Institute, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 6th ed. NCCLS document M7-A6. NCCLS, Wayne, PA, USA (2003).Google Scholar
  6. Diekema, D. J. and Jones, R. N., Oxazolidinone antibiotics. Lancet, 358, 1975–1982 (2001).PubMedCrossRefGoogle Scholar
  7. Fidkin, S. K., Vancomycin intermediate and resistant Staphylococcus aureus: what the infectious diseases specialist needs to know. Clin. Infect. Dis., 32, 108–115 (2001).CrossRefGoogle Scholar
  8. Frazee, B. W., Lynn, J., Charlebois, E. D., Lambert, L., Lowery, D., and Perdreau-Remington, F., High prevalence of methicilli-resistant Staphylococcus aureus in emergency department skin and soft tissue infections. Ann. Emer. Med., 45, 311–320 (2005).CrossRefGoogle Scholar
  9. Fuchs, P. C., Barry, A. L., and Brown, S. D., Daptomycin susceptibility tests: Interpretive criteria, quality control, and effect of calcium on in vitro tests. Diagn. Microbiol. Infect. Dis., 38, 51–58 (2000).PubMedCrossRefGoogle Scholar
  10. Decousser, J. W., Pfister, P., Xueref, X., Rakoto-Alson, O., and Roux, J. F., Resistances acquises auxantibiotiques a Madagascar: premiere evaluation. Med. Trop., 59, 259–265 (1999).Google Scholar
  11. Diekema, D. J., Pfaller, M. A., Schmitz, F. J., Smayevsky, J., Bell, J., Jones, R. N., and Beach, M: SENTRY Participants Group, Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis., 32(Suppl 2), 114–132 (2001).CrossRefGoogle Scholar
  12. Hiramatsu, K., Watanabe, S., Takeuchi, F., Ito, T., and Baba, T., Genetic characterization of methicillin-resistant Staphylococcus aureus. Vaccine, 22S, S5–S8 (2004).CrossRefGoogle Scholar
  13. Ito, T., Katayama, Y., Asada, K., Mori, N., Tsutsumimoto, K., Tiensasitorn, C., and Hiramatsu, K., Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 45, 1323–1336 (2001).PubMedCrossRefGoogle Scholar
  14. Jones, M. E., Karlowsky, J. A., Draghi, D. C., Thornsberry, C., Sahm, D. F., and Nathwani, D., Epidemiology and antibiotic susceptibility of bacteria causing skin and soft tissue infections in the USA and Europe: a guide to appropriate antimicrobial therapy. Int. J. Antimicrob. Agents, 22, 406–419 (2003).PubMedCrossRefGoogle Scholar
  15. Jones, R. N., Global epidemiology of antimicrobial resistance among community-acquired and nosocomial pathogens: A five-year summary from the Sentry Antimicrobial Surveillance Program (1997–2001). Semin. Respir. Crit. Care. Med., 24, 121–133 (2003).PubMedCrossRefGoogle Scholar
  16. Jones, T. F., Kellum, M. E., Porter, S. S., Bell, M., and Schaffner, W., An outbreak of community-acquired foodborne illness caused by methicillin-resistant Staphylo-coccus aureus. Emer. Infect. Dis., 8, 82–84 (2002).Google Scholar
  17. Katayama, Y., Ito, T., and Hiramatu K., A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother., 44, 1549–1555 (2000).PubMedCrossRefGoogle Scholar
  18. Kim, J. S, Song, W., Kim, H. S., Cho, H. C., Lee, K. M., Choi, M. S., and Kim, F. C., Association between the methicillin resistance of clinical isolates of Staphylococcus aureus, their staphylococcal cassette chromosome mec (SCCmec) subtype classification, and their toxin gene profiles. Diagn. Microb. Infect. Dis., 56, 289–295 (2006).CrossRefGoogle Scholar
  19. Kim, S. M., Shim, E. S., and Seong, C. N., Prevalence and antibiotic susceptibility of vancomycin-resistant enterococci in chicken intestines and fecal samples from healthy young children and intensive care unit patients. J. Microbiol., 39, 116–120 (2001).Google Scholar
  20. Kitai, S., Shimizu, A., Kawano, J., Sato, E., Nakano, C., Uji, T., and Kitagawa, H., Characterization of methicillin-resistant Staphylococcus aureus isolated from retail raw chicken meat in Japan. J. Vet. Med. Sci., 67, 107–110 (2005).PubMedCrossRefGoogle Scholar
  21. Klare, I., Heier, H., Claus, H., Reissbrodt, R., and Witte, W., VanAmediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol. Lett., 125, 165–172 (1995).PubMedCrossRefGoogle Scholar
  22. Kluytmans, J., Van Leeuwen, W., Goessen, W., Hollis, R., Messer, S., Herwaldt, A., and Verbrugh, H., Food-initiated outbreak of methicillin-resistant Staphylococcus aureus analysed by phenol-and genotyping. J. Clin. Microbiol., 33, 1121–1128 (1995).PubMedGoogle Scholar
  23. Mandell, G., Douglas, J., and Bennett, R., Principles and Practices of Infectious Diseases. Fourth ed. Churchill Living-stone Ltd., Edinburgh, UK (1995).Google Scholar
  24. Meng, J., Zhao, S., Doyle, M. P., and Joseph, S. W., Antibiotic resistance of Escherichia coli O157:H7 and O157:NM isolated from animals, food, and humans. J. Food. Prot., 61, 1511–1514 (1998).PubMedGoogle Scholar
  25. Moran, G. j., Krishnadasan, A., Gorwitz, R. J., Foshein, G. E., McDougal, L. K., Carey, R. B., and Talan, D. A., Methicillin-Resistant S. aureus Infections among Patients in the Emergency Department. NEJM, 355, 666–674 (2006).PubMedCrossRefGoogle Scholar
  26. Mulazimoglu, L., Drenning, S. D., and Muder, P. R., Vancomycingentamicin synergism revisited: effect of gentamicin susceptibility of methicillin-resistant Staphylococ-cus aureus. Antimicrob. Agents Chemother., 40, 1534–1535 (1996).PubMedGoogle Scholar
  27. Okii, K., Hiyama, E., Takesue, Y., Kodaira, M., Sueda, T., and Yokoyama, T., Molecular epidemiology of enteritis-causing methicillin-resistant Staphylococcus aureus. J. Hosp. Infect., 62, 37–43 (2006).PubMedCrossRefGoogle Scholar
  28. Pesavento, G., Ducci, B., Comodo, N., and Lo Nostro, A., Antimicrobial resistance profile of Staphylococcus aureus isolated from raw meat: A research for methicillin resistant Staphylococcus aureus (MRSA). Food Control, 18, 196–200 (2007).CrossRefGoogle Scholar
  29. Raad, I., Hachem, R., Hanna, H., Afif, C., Escalante, C., Kantarjian, H., and Rolston, K., Prospective, randomized study comparing quinupristin-dalfopristin with linezolid in the treatment of vancomycin-resistant Enterococcus faecium infections. J. Antimicrob. Chemother., 53, 646–649 (2004).PubMedCrossRefGoogle Scholar
  30. Rota C., Yanguela, J., Blanco, D., Carraminana, J. J., Arino, A., and Herrera, A., High prevalence of multiple resistance to antibiotics in 144 Listeria isolates from Spanish dairy and meat products. J. Food. Prot., 59, 938–943 (1996).Google Scholar
  31. Sader, H. S., Jones, R. N., Gales, A. C., Winokur, P., Kugler, K. C., Pfaller, M. A., and Doern, G. V., Antimicrobial susceptibility patterns for pathogens isolated from patients in Latin American medical centers with a diagnosis of pneumonia: analysis of results from the SENTRY Antimicrobial Surveillance Program (1997). Diagn. Microbiol. Infect. Dis., 32, 289–301 (1997).CrossRefGoogle Scholar
  32. Schentag, J. J., Antimicrobial management strategies for Grampositive bacterial resistance in the intensive care unit. Crit. Care Med., 29(4 Suppl), N100–N107 (2001).PubMedCrossRefGoogle Scholar
  33. Sorum, H., and L’Abee-Lund, T. M., Antibiotic resistance in foodrelated bacteria-a result of interfering with the global web of bacterial genetics. Int. J. Food Microbiol., 78, 43–56 (2002).PubMedCrossRefGoogle Scholar
  34. Tenover, C. F., Biddle, J. W., and Lancaster, M. V., Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus. Emerg. Infect. Dis., 7, 327–332 (2001).PubMedCrossRefGoogle Scholar
  35. Valsangiacomo, C., Dolina, M., Peduzzi, R., and Jaggli, M., Antimicrobial susceptibility of Staphylococcus aureus isolates from hospitalized patients and dairy food (fresh cheese): a survey over a decade in southern Switzerland. Clin. Microb. Infect. Dis., 6, 393–394 (2000).CrossRefGoogle Scholar
  36. Van Duijkeren, E., Box, A. T. A., Heck, M. E. O. C., Wannet, W. J. B., and Fluit, A. C., Methicillin-resistant staphylococci isolated from animals. Vet. Microbiol., 103, 91–97 (2004).PubMedCrossRefGoogle Scholar
  37. Wesson, K. M., Lerner, D. S., Silverberg, N. B., and Weinberg, J. M., Linezolid, quinupristin/d-alfopristin, and daptomycin in dermatology. Dis. Mon., 50, 395–406 (2004).PubMedCrossRefGoogle Scholar
  38. Witte, W., Impact of antibiotic use in animal feeding on resistance of bacterial pathogens in humans. Ciba. Found. Symp., 207, 61–71 (1997).PubMedGoogle Scholar
  39. Yucel, N., Citak, S., and Onder, M., Prevalence and antibiotic resistance of Listeria species in meat products in Ankara, Turkey. Food Microbiol., 22, 241–245 (2005).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Do Kyung Lee
    • 1
  • Jae Ung Hwang
    • 1
  • Eun Hye Baek
    • 1
  • Kang Oh Lee
    • 2
    • 1
  • Kyung Jae Kim
    • 1
  • Nam Joo Ha
    • 1
  1. 1.Department of PharmacySahmyook UniversitySeoulKorea
  2. 2.Department of Life ScienceSahmyook UniversitySeoulKorea

Personalised recommendations