Archives of Pharmacal Research

, Volume 31, Issue 8, pp 970–972

A new chromone glycoside from Rhododendron spinuliferum

  • Gang Chen
  • Hui Zi Jin
  • Xue Feng Li
  • Qi Zhang
  • Yun Heng Shen
  • Shi Kai Yan
  • Wei Dong Zhang
Research Articles Drug Discovery

Abstract

A new chromone glycoside, 3,5,7-trihydroxylchromone-3-O-α-L-arabinopyranoside (1), together with quercetin (2), (+)-catechin (3), (−)-epi-catechin (4) were isolated from the aerial parts of Rhododendron spinuliferum. The structure of 1 was elucidated on the basis of spectroscopic and 2D-NMR spectral analysis. In addition, 1 exhibited mild inhibitory effect on NO production in LPS-stimulated RAW264.7 cells.

Key words

Rhododendron spinuliferum Chromone 3,5,7-Trihydroxylchromone-3-O-α-L-arabinopyranoside Nitric oxide (NO) production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, S. X., Hu, Q., and Liu, K. Y., Pharmacognostics studies on Rhododendron spinuliferum Franch. J. Chin. Ethnomed. Ethnophar., 23, 24–26 (1996).Google Scholar
  2. Chen, Y. C., Lin-Shiau, S. Y., and Lin, J. K., Involvement of reactive oxygen species and caspase 3 activation in arsenite induce apoptosis. J. Cell. Physiol., 177, 323–324 (1998).Google Scholar
  3. Denizot, F. and Lang, R., Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 89, 271–277 (1986).PubMedCrossRefGoogle Scholar
  4. Feng, Z. M., Wang, Y. H., and Zhang, P. C., The chemical constitutents of Rhododendron ovatum Planch. Acta Pharmaccutica Sinica, 40, 150–152 (2005).Google Scholar
  5. Keun, Y. J., Jae, C. D., and Kun, H. S., Triterpene glycosides from the roots of Dipsacus asper. J. Nat. Prod., 56, 1912–1916 (1993).CrossRefGoogle Scholar
  6. Liu, J. Z. and Wang, L., Studies on chemical constituents of Hedyotis diffusa Willd. J. Hebei Med. Univ., 28, 188–190 (2007).Google Scholar
  7. Li, Y. L., Su, M. X., Cen, Y. Z., Zhang, X. Q., Dai, Y., and Ye, W. C., Study on the chemical constituents of Ardisia chinensis. J. Chin. Med. Mater., 29, 331–333 (2006).Google Scholar
  8. Moncada, S., Palmer, R. M. J., and Higgs, E. A., Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 43, 109–142 (1991).PubMedGoogle Scholar
  9. Nqnaka, G. I. and Nishioka, I., Tannins and relate compounds VII phenylpropanoid-substituted epicatechins, cinchonains from Cinchona succirubra. Chem. Pharm. Bull., 30, 4268–4276 (1982).Google Scholar
  10. Radomski, M. W., Palmer, R. M. J., and Moncada, S., The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem. Biophys. Res. Commun., 148, 1482–1489 (1987).PubMedCrossRefGoogle Scholar
  11. Schmidt, H. H. H. W. and Kelm, M., Determination of nitrite and nitrate by the Griess reaction. In: Methods in nitric oxide research. London, John Wiley & Sons Ltd., Chapter 33, pp. 491–497 (1996).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Gang Chen
    • 1
    • 2
  • Hui Zi Jin
    • 1
  • Xue Feng Li
    • 3
  • Qi Zhang
    • 2
  • Yun Heng Shen
    • 4
  • Shi Kai Yan
    • 1
  • Wei Dong Zhang
    • 1
    • 4
  1. 1.School of PharmacyShanghai Jiaotong UniversityShanghaiP. R. China
  2. 2.School of Lifescience and Pharmaceutical EngineeringNanJing University of TechnologyNanjingPR China
  3. 3.JiangXi University of Traditional Chinese MedicineKey Laboratory of Modern Chinese Preparation, Ministry of EducationNanchangChina
  4. 4.School of PharmacySecond Military UniversityShanghaiP. R. China

Personalised recommendations