Constituents of the flowers of Erigeron annuus with inhibitory activity on the formation of advanced glycation end products (AGEs) and aldose reductase

  • Dae Sik Jang
  • Nam Hee Yoo
  • Yun Mi Lee
  • Jeong Lim Yoo
  • Young Sook Kim
  • Jin Sook KimEmail author


Seven phenolic compounds, caffeic acid (1), 4-hydroxybenzoic acid (2), 4-methoxybenzoic acid (3), protocatechuic acid (4), eugenol O-β-D-glucopyranoside (5), 3,6-di-O-feruloylsucrose (6), and 3,5-di-O-caffeoylquinic acid methyl ester (7), were isolated from an EtOAc-soluble partition of the flowers of Erigeron annuus. The structures of 1–7 were determined by spectroscopic data interpretation, particularly 1D and 2D NMR studies, and by comparison of their data with those published in the literature. All the isolates were subjected to in vitro bioassays to evaluate their inhibitory activities against the formation of advanced glycation end products (AGEs) and rat lens aldose reductase (RLAR). Of the compounds, 1, 6, and 7 exhibited potent inhibitory activities against the formation of AGEs. In the RLAR assay, compound 7 showed the most potent inhibitory activity.

Key words

Erigeron annuus Compositae Phenolic compounds Advanced glycation end products (AGEs) Rat lens aldose reductase (RLAR) Diabetic complications 


  1. Beyer-Mears, A. and Cruz, E., Reversal of diabetic cataract by sorbinil, an aldose reductase inhibitor. Diabetes, 34, 15–21 (1985).PubMedCrossRefGoogle Scholar
  2. Choudhary, M. I., Begum, A., Abbaskhan, A., and Shafiq-ur-Rehman, Atta-ur-Rahman., Carbohyd. Res., 341, 2398–2405 (2006).CrossRefGoogle Scholar
  3. Fuente, J. A. and Manzanaro, S., Aldose reductase inhibitors from natural sources. Nat. Prod. Rep., 20, 243–251 (2003).PubMedCrossRefGoogle Scholar
  4. Forbes, J. M., Cooper, M. E., Oldfield, M. D., and Thomas, M. C., Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol., 14, S254–S258 (2003).PubMedCrossRefGoogle Scholar
  5. Hashidoko, Y., Pyromeconic acid and its glucosidic derivatives from leaves of Erigeron annuus and the siderophile activity of pyromeconic acid. Biosci. Biotech. Biochem., 59, 886–890 (1995).CrossRefGoogle Scholar
  6. Iijima, T., Yaoita, Y., and Kikuchi, M., Two new cyclopentenone derivatives and a new cyclooctadienone derivative from Erigeron annuus (L.) Pers., Erigeron philadelphicus L., and Erigeron sumatrensis Retz. Chem. Pharm. Bull., 51, 894–896 (2003a).PubMedCrossRefGoogle Scholar
  7. Iijima, T., Yaoita, Y., and Kikuchi, M., Five new sesquiterpenoids and a new diterpenoid from Erigeron annuus (L.) Pers., Erigeron philadelphicus L., and Erigeron sumatrensis Retz. Chem. Pharm. Bull., 51, 545–549 (2003b).PubMedCrossRefGoogle Scholar
  8. Jang, D. S., Kim, J. M., Lee, Y. M., Yoo, J. L., Kim, Y. S., Kim, J.-H., and Kim, J. S., Flavonols from Houttuynia cordata with protein glycation and aldose reductase inhibitory activity. Nat. Prod. Sci., 12, 210–213 (2006).Google Scholar
  9. Jang, D. S., Lee, G. Y., Kim, Y. S., Lee, Y. M., Kim, C.-S., Yoo, J. L., and Kim, J. S., Anthraquinones from the seeds of Cassia tora with inhibitory activity on protein glycation and aldose reductase. Biol. Pharm. Bull., 30, 2207–2210 (2007).PubMedCrossRefGoogle Scholar
  10. Jiangsu College of New Medicine., A Dictionary of the Traditional Chinese Medicines. Peoples’ Hygiene Publisher, Beijing, p 4, (1997).Google Scholar
  11. Jung, U. J., Lee, M.-K., Park, Y. B., Jeon, S.-M., and Choi, M.-S., Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther., 318, 476–483 (2006).PubMedCrossRefGoogle Scholar
  12. Kalousova, M., Zima, T., Tesar, V., Stipek, S., and Sulkova, S., Advanced glycation end products in clinical nephrology. Kidney Blood Press Res., 27, 18–28 (2004).PubMedCrossRefGoogle Scholar
  13. Kim, H.-Y. and Oh, J. H., Screening of Korean forest plants for rat lens aldose reductase inhibition. Biosci. Biotechnol. Biochem. 63, 184–188 (1999).PubMedCrossRefGoogle Scholar
  14. Larkins, R. G. and Dunlop, M. E., The link between hyperglycemia and diabetic nephropathy. Diabetologia, 35, 499–504 (1992).PubMedCrossRefGoogle Scholar
  15. Li, X., Pan, J., and Gao, K., γ-Pyranone derivatives and other constituents from Erigeron annuus. Pharmazie, 61, 474–477 (2006).PubMedGoogle Scholar
  16. Li, X., Yang, M., Han, Y.-F., and Gao, K., New sesquiterpenes from Erigeron annus. Planta Med., 71, 268–272 (2005).PubMedCrossRefGoogle Scholar
  17. Logendra, S., Ribnicky, D. M., Yang, H., Poulev, A., Ma, J., Kennelly, E. J., and Raskin, I., Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. Phytochemistry, 67, 1539–1546 (2006).PubMedCrossRefGoogle Scholar
  18. Lu, W., Yamaoka, Y., Taniguchi, Y., Kitamura, T., Takaki, K., and Fujiwara, Y., J. Organomet. Chem., 580, 290–294 (1999).CrossRefGoogle Scholar
  19. Makita, Z., Radoff, S., Rayfield, E. J., Yang, Z. H., Skolnik, E., Delaney, V., Friedman, E. A., Cerami, A., and Vlassara, H. N., Advanced glycosylation end products in patients with diabetic nephropathy. N. Eng. J. Med., 325, 836–842 (1993).Google Scholar
  20. Matsuda, H., Morikawa, T., Toguchida, I., and Yoshikawa, M., Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem. Pharm. Bull. 50, 788–795 (2002).PubMedCrossRefGoogle Scholar
  21. Oh, H., Lee, S., Lee, H.-S., Lee, D.-H., Lee, S. Y., Chung, H.-T., Kim, T. S., and Kwon, T.-O., Germination inhibitory constituents from Erigeron annuus. Phytochemistry, 61, 175–179 (2002).PubMedCrossRefGoogle Scholar
  22. Park, W. Y., Lee, S. C., Ahn, B. T., Lee, S. H., Ro, J. S., and Lee, K. S., Phenolic compounds from Acalypha australis L. Kor. J. Pharmacogn., 24, 20–25 (1993).Google Scholar
  23. Peng, L. Y., Mei, S. X., Jiang, B., Zhou, H., and Sun, H. D., Constituents from Lonicera japonica. Fitoterapia, 71, 713–715 (2000).PubMedCrossRefGoogle Scholar
  24. Pyo, M. K., Koo, Y. K., and Yun-Choi, H. S., Anti-platelet effect of the phenolic constituents isolated from the leaves of Magnolia obovata. Nat. Prod. Sci., 8, 147–151 (2002).Google Scholar
  25. Rahbar, S., Yerneni, K. K., Scott, S., Gonzales, N., and Lalezari, I., Novel inhibitors of advanced glycation endproducts (Part II). Mol. Cell Biol. Res. Commun., 3, 360–366 (2000).PubMedCrossRefGoogle Scholar
  26. Shimoda, K., Kondo, Y., Nishida, T., Hamada, H., Nakajima, N., and Hamada, H., Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry, 67, 2256–2261 (2006).PubMedCrossRefGoogle Scholar
  27. Shimomura, H., Sashida, Y., and Mimaki, Y., Bitter phenylpropanoid glycosides from Lilium speciosum var. rubrum. Phytochemistry, 25, 2897–2899 (1986).CrossRefGoogle Scholar
  28. Shinohara, R., Mano, T., Nagasaka, A., Sawai, Y., Uchimura, K., Hayashi, R., Hayakawa, N., Nagata, M., Makino, M., Kakizawa, H., Itoh, Y., Nakai, A., and Itoh, M., Effects of thyroid hormone on the sorbitol pathway in streptozotocin-induced diabetic rats. Biochim. Biophys. Acta, 1425, 577–586 (1998).PubMedGoogle Scholar
  29. Vinson, J. A. and Howard III, T. B., Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem., 7, 659–663 (1996).CrossRefGoogle Scholar
  30. Yabe-Nishimura, C., Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol. Rev., 50, 21–33 (1998).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Dae Sik Jang
    • 1
  • Nam Hee Yoo
    • 1
  • Yun Mi Lee
    • 1
  • Jeong Lim Yoo
    • 1
  • Young Sook Kim
    • 1
  • Jin Sook Kim
    • 1
    Email author
  1. 1.Department of Herbal Pharmaceutical DevelopmentKorea Institute of Oriental MedicineDaejeonKorea

Personalised recommendations