Quercetin inhalation inhibits the asthmatic responses by exposure to aerosolized-ovalbumin in conscious guinea-pigs

  • Hee Moon
  • Hyun Ho Choi
  • Ji Yun Lee
  • Hyo Jin Moon
  • Sang Soo Sim
  • Chang Jong Kim
Articles Drug Efficacy and Safety


Effects of quercetin inhalation on immediate (IAR), late-phase (LAR) and late late-phase (LLAR) asthmatic responses by exposure to aerosolized-ovalbumin (AOA) (2w/v% in saline, inhalation for 3 min) were studied in conscious guinea-pigs sensitized with AOA. We measured specific airway resistance (sRaw), and recruitment of leukocytes, histamine and protein contents and phospholipase A2 (PLA2) activity in bronchoalveolar lavage fluid (BALF). Effects of quercetin (10 mg/mL, inhalation for 2 min) compared with cromolyn sodium, salbutamol, and dexamethasone inhalations, respectively. Quercetin inhalation decreased sRaw by 57.15 ± 3.82% in IAR, 57.72 ± 7.28% in LAR, and 55.20 ± 5.69% in LLAR compared with AOA-inhaled control. Salbutamol inhalation (5 mg/mL) significantly inhibited sRaw in IAR, but inhalations of cromolyn sodium (10 mg/mL) and dexamethasone (5 mg/mL) significantly inhibited sRaw in IAR, LAR and LLAR, respectively. Inhibitory activity of quercetin inhalation on sRaw was similar to effect of its oral administration (10 mg/kg) in asthmatic responses. Quercetin (10 mg/mL, inhalation for 2 min) significantly decreased histamine and protein contents, PLA2 activity, and recruitments of leukocytes in BALF and also improved slightly infiltration of eosinophils and neutrophils in histopathological survey. Its anti-asthmatic activity was similar to cromolyn sodium and dexamethasone.

Key words

Quercetin inhalation Anti-asthmatic action Specific airway resistance Recruitment of eosinophil Bronchoalveolar lavage fluid Guinea pigs 



Aerosolized ovalbumin


Brochoalveolar lavage fluid


Bovine serum albumin


Balanced salt solution





H & E

Hematoxylin and eosin


4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid


Immediate-phase asthmatic response


Immunoglobulin E


Late-phase asthmatic response


Late late-phase asthmatic response




Phospholipase A2


Polymorphonuclear leukocytes

10-Pyrene PC

Pyrene-labeled phospholipids


Specific airway resistance


  1. Benhamou, A. H., Vanini, G., Lantin, J. P., and Eigenman, P. A., Antihistamine and sodium cromoglycate medication for food cold water exercise-induced anaphylaxis. Allergy, 62, 1471–1472 (2007).PubMedCrossRefGoogle Scholar
  2. Crompton, G., A brief history of inhaled asthma therapy over the last fifty years. Prim. Care Respir. J., 15, 326–331 (2006).PubMedCrossRefGoogle Scholar
  3. Fewtrell, C. M. S. and Gomperts, B. D., Effect of flavone inhibitors of transport ATPases on histamine secretion from rat mast cells. Nature, 265, 635–636 (1997).CrossRefGoogle Scholar
  4. Hirai, S., Kim, Y. I., Goto, T., Kang, M. S., Yoshimura, M., Obata, A., Yu, R., and Kawada, T., Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci., 81, 1272–1279 (2007).PubMedCrossRefGoogle Scholar
  5. Huston, P. A., Chuch, M. K., Clay, T. P., Miller, P., and Holgate, S. P., Early and late-phase bronchoconstriction after allergen challenge of nonanesthetized guinea pigs. I. The association of disordered airway physiology to leukocyte infiltration. Am. Rev. Respir. Dis., 137, 548–557 (1988).Google Scholar
  6. Hutson, P. A., Holgate, S. T., and Church, M. K., The effect of cromolyn sodium and albuterol on early and late phase bronchoconstriction and airway leukocyte infiltration after allergen challenge of nonanesthetized guinea pigs. Am. Rev. Respir. Dis., 138, 1157–1163 (1988).PubMedGoogle Scholar
  7. Jiang, J. S., Shih, C. M., Wang, S. H., Chen, T. T., Lin, C. N., and Ko, W. C., Mechanisms of suppression of nitric oxide production by 3-O-methylquercetin in RAW 264.7 cells. J. Ethnopharmacol., 103, 281–287 (2006).PubMedCrossRefGoogle Scholar
  8. Jung, C. H., Lee, J. Y., Cho, C. H., and Kim, C. J., Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Ach. Pharm. Res., 30, 1599–1607 (2007).CrossRefGoogle Scholar
  9. Li, W. G., Zhang, X. Y., Wu, Y. J., and Tian, X., Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacol. Sin., 22, 1117–1120 (2001).PubMedGoogle Scholar
  10. Matsumoto, T., Ashida, Y., and Tsukuda, R., Pharmacological modulation of immediate and late airway response and leukocyte infiltration in the guinea pig. J. Pharmacol. Exp. Ther., 269, 1236–1244 (1994).PubMedGoogle Scholar
  11. Morales, M. A., Tortoriello, J., Meckes, M., Paz, D., and Lozoya, X., Calcium-antagonist effect of quercetin and its relation with the spasmolytic properties of Psidium guajava L. Arch. Med. Res., 25, 17–21 (1994).PubMedGoogle Scholar
  12. Nishino, H., Iwashima, A., Fujiki, H., and Suginuma, T., Inhibition by quercetin of the promoting effect of teleocidin on skin papilloma formation in mice initiated with 7,12-dimethylbenz [a]anthracene. Jpn. J. Cancer Res., 75, 113–116 (1984).Google Scholar
  13. Chew Nora Y. K., Bagster Ddvid F., and Chan Hak-Kim, Effect of particle size, air fow and inhaler device on the aerosolisation of disodium cromoglycate powders, Int J Pharmaceut., 206, 75–83 (2000).CrossRefGoogle Scholar
  14. Omisore, N. O., Adewunmi, C. O., Iwalewa, E. O., Ngadjui, B. T., Adenowo, T. K., Abegaz, B. M., Ojewole, J. A., and Watchueng, J., Antitrichomonal and antioxidant activities of Dorstenia barteri and Dorstenia convexa. Braz. J. Med. Biol. Res., 38, 1087–1094 (2005).PubMedCrossRefGoogle Scholar
  15. Pennock, B. E., Pennock, C. P., Rogers, R. M., Cain, W. A., and Wells, J. H., A noninvasive technique for measurement of changes in specific airway resistance. J. Appl. Physiol., 46, 399–406 (1979).PubMedGoogle Scholar
  16. Pettinari, A., Amici, M., Cuccioloni, M., Angeletti, M., Fioretti, E., and Eleuteri, A. M., Effect of polyphenolic compounds on the proteolytic activities of constitutive and immunoproteasomes. Antioxid. Redox. Signal., 8, 121–129 (2006).PubMedCrossRefGoogle Scholar
  17. Radvanyi, F., Jordan, L., Russo-Marie, F., and Bon, C., A sensitive and continuous fluorometric assay for phospholipase A2 using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem., 177, 103–109 (1989).PubMedCrossRefGoogle Scholar
  18. Ramesh, M., Rao, Y. N., Rao, A. V., Prabhakar, M. C., Rao, C. S., Muralidhar, N., and Reddy, B. M.., Antinociceptive and anti-inflammatory activity of a flavonoid isolated from Caralluma attenuata. J. Ethnopharmacol., 62, 63–66 (1998).PubMedCrossRefGoogle Scholar
  19. Sanjar, S., Aoki, S., Kristersson, Smith, D., and Moley, J., Antigen challenge induces pulmonary airway eosinophil accumulation and airway hyperreactivity in sensitized guinea-pigs: the effect of anti-asthma drugs. Br. J. Pharmacol., 99, 679–686 (1990).PubMedGoogle Scholar
  20. Shibata, S., Inoue, H., Iwata, S., Ma, R. D., Yu, L. J., Ueyama, H., Takayasu, J., Hasegawa, T., Tokuda, H., and Nishino, A., Inhibitory effects of licochalcone A isolated from Glycyrrhiza inflata root on inflammatory ear edema and tumour promotion in mice. Planta Med., 57, 221–224 (1991).PubMedCrossRefGoogle Scholar
  21. Shore, P. A., Burkhalter, A., and Cohn, V. H. Jr., A method for the fluorometric assay of histamine in tissues. J. Pharmacol. Exp. Ther., 127, 182–186 (1959).PubMedGoogle Scholar
  22. Skaltsa, H., Bermejo, P., Lazari, D., Silvan, A. M., Skaltsounis, A. L., Sanz, A., and Abad, M. J., Inhibition of prostaglandin E2 and leukotriene C4 in mouse peritoneal macrophages and thromboxane B2 production in human platelets by flavonoids from Stachys chrysantha and Stachys candida. Biol. Pharm. Bull., 23, 47–53 (2000).PubMedGoogle Scholar
  23. Su, Y. C., Peng, H. J., Wang, S. R., Han, S. H., and Tsai, J. J., Effect of BCG on ovalbumin-induced bronchial hyperreactivity in a guinea pig asthma model. J. Microbiol., Immunol. Infect. 34, 25–34 (2001).Google Scholar
  24. Toward, T. J. and Broadley, K. J., Early and late bronchoconstrictions, airway hyper-reactivity, leucocyte influx and lung histamine and nitric oxide after inhaled antigen: effects of dexamethasone and rolipram. Clin. Exp. Allergy, 34, 91–102 (2004).PubMedCrossRefGoogle Scholar
  25. Villar, A., Gasco, M. A., and Alcaraz, M. J., Anti-inflammatory and anti-ulcer properties of hypolaetin-8-glucoside, a novel plant flavonoid. J. Pharm. Pharmacol., 36, 820–823 (1984).PubMedGoogle Scholar
  26. Wu, M. J., Wang, L., Ding, H. Y., Weng, C. Y., and Yen, J. H., Glossogyne tenuifolia acts to inhibit inflammatory mediator production in a macrophage cell line by down-regulating LPS-induced NF-kappa B. J. Biomed. Sci., 11, 186–199 (2004).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Hee Moon
    • 1
  • Hyun Ho Choi
    • 1
  • Ji Yun Lee
    • 1
  • Hyo Jin Moon
    • 1
  • Sang Soo Sim
    • 1
  • Chang Jong Kim
    • 1
  1. 1.Division of Pathophysiology and Pharmacology, College of PharmacyChung-Ang UniversitySeoulKorea

Personalised recommendations