Archives of Pharmacal Research

, Volume 31, Issue 6, pp 742–748

Emodin-induced apoptosis in human breast cancer BCap-37 cells through the mitochondrial signaling pathway

Articles Drug Efficacy and Safety


Emodin, a natural anthraquinone compound isolated from the rhizome of rhubarb, is reported to suppress the growth of tumor in many clinical situations. In this study, we focused on the effect of emodin in human breast cancer BCap-37 cells and further understand the underlying molecular mechanism in treating breast cancer. Using MTT assay and flow cytometry, we demonstrated the critical role of emodin in the suppression of the proliferation of BCap-37 cells based on a concentration-and time-dependent manner. The increase of apoptotic rate was also observed after incubation of BCap-37 cells on emodin at 20 μM and 50 μM for 48 h. The cells exhibited typical apoptotic features including cellular morphological change, chromatin condensation and membrane blebbing. The results of the study further showed that Bcl-2 level decreased, while Bax and cytosolic cytochrome c levels in sample cells increased after the emodin treatment by using Western blot. The decline in the Bcl-2/Bax ratio and the increase of cytosolic cytochrome c concentration were consistent with the increase of the apoptotic ratio. The results strongly suggest that the disruption of the mitochondrial signaling pathway was involved in emodin-induced apoptosis in BCap-37 cells.

Key words

Emodin Human breast cancer BCap-37 cells Apoptosis The mitochondrial signaling pathway 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  2. Brambilla, E., Negoescu, A., Gazzeri, S., Lantuejoul, S., Moro, D., Brambilla, C., and Coll, J. L., Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am. J. Pathol., 149, 941–1952 (1996).Google Scholar
  3. Cai, J., Xuan, Z. R., Wei, Y. P., Yang, H. B., and Wang, H., Effects of perioperative administration of Rhubarb on acute inflammatory response in patients with gastric cancer. Zhong Xi Yi Jie He Xue Bao, 3, 195–198 (2005).PubMedCrossRefGoogle Scholar
  4. Cha, T. L., Qiu, L., Chen, C. T., Wen, Y., and Hung, M. C., Emodin Down-Regulates Androgen Receptor and Inhibits Prostate Cancer Cell Growth. Cancer Res., 65, 2287–2295 (2005).PubMedCrossRefGoogle Scholar
  5. Chan, T. C., Chang, C. J., Koonchanok, N. M., and Geahlen, R. L., Selective inhibition of the growth of ras-transformed human bronchial epithelial cells by emodin, a protein-tyrosine kinase inhibitor. Biochem. Biophys. Res.Commun., 193, 1152–1158 (1993).PubMedCrossRefGoogle Scholar
  6. Chen, Y. C., Shen, S. C., Lee, W. R., Hsu, F. L., Lin, H. Y., Ko, C. H., and Tseng, S. W., Emodin induces apoptosis in human promyeleukemic HL60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem. Pharmacol., 64, 1713–1724 (2002).PubMedCrossRefGoogle Scholar
  7. Chresta, C. M., Masters, J. R., and Hickman, J. A., Hypersensitivity of human testicular tumors to etoposide-induced apoptosis is associated with functional p53 and a high Bax:Bcl-2 ratio. Cancer Res., 56, 1834–1841 (1996).PubMedGoogle Scholar
  8. Fu, Z., Han, J., and Huang, H., Effects of emodin on gene expression profile in small cell lung cancer NCI-H446 cells. Chin. Med. J., 120, 1710–1715 (2007).PubMedGoogle Scholar
  9. Gazzaniga, P., Gradilone, A., Vercillo, R., Gandini, O., Silvestri, I., Napolitano, M., Albonici, L., Vincenzoni, A., Gallucci, M., Frati, L., and Agliano, A. M., Bcl-2/bax mRNA expression ratio as prognostic factor in low-grade urinary bladder cancer. Int. J. Cancer, 69, 100–104 (1996).PubMedCrossRefGoogle Scholar
  10. Huang, Q., Shen, H. M., Shui, G., Wenk, M. R., and Ong, C. M., Emodin Inhibits Tumor Cell Adhesion through Disruption of the Membrane Lipid Raft-Associated Integrin Signaling Pathway. Cancer Res., 66, 5807–5815(2006).PubMedCrossRefGoogle Scholar
  11. Jing, X., Ueki, N., Cheng, J., Imanishi, H., and Hada, T., Induction of apoptosis in hepatocellular carcinoma cell lines by emodin. Jpn. J. Cancer Res., 93, 874–882 (2002).PubMedGoogle Scholar
  12. Jing Y, Yang, J., Wang, Y., Li, H., Chen, Y., Hu, Q., Shi, G., Tang, X., and Yi, J., Alteration of subcellular redox equilibrium and the consequent oxidative modification of nuclear factor êB are critical for anticancer cytotoxicity by emodin, a reactive oxygen species-producing agent. Free Radic. Biol. Med., 40, 2183–2197 (2006).PubMedCrossRefGoogle Scholar
  13. Kang, S. C., Lee, C. M., Choi, H., Lee, J. H., Oh, J. S., Kwak, J. H., and Zee, O. P., Evaluation of oriental medicinal herbs for estrogenic and antiproliferative activities. Phytother. Res., 20, 1017–1019 (2006).PubMedCrossRefGoogle Scholar
  14. Kroemer, G. and Reed, J. C., Mitochondrial control of cell death. Nature Med., 6, 513–519 (2000).PubMedCrossRefGoogle Scholar
  15. Kwak, H. J., Park, M. J., Park, C. M., Moon, S. I., Yoo, D. H., Lee, H. C., Lee, S. H., Kim. M. S., Lee, H. W., Shin, W. S., Park, I. C., Rhee, C. H., and Hong, S. I., Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int. J. Cancer, 118, 2711–2720 (2006).PubMedCrossRefGoogle Scholar
  16. Lee, H. Z., Effects and mechanisms of emodin on cell death in human lung squamous cell carcinoma. Br. J. Pharmacol., 134, 11–20 (2001).PubMedCrossRefGoogle Scholar
  17. Lin, S., Fujii, M., and Hou, D. X., Rhein induces apoptosis in HL-60 cells via reactive oxygen species-independent mitochondrial death pathway. Arch. Biochem. Biophys., 418, 99–107 (2003).PubMedCrossRefGoogle Scholar
  18. Mantani, N., Sekiya, N., Sakai, S., Kogure, T., Shimada, Y., and Terasawa, K., Rhubarb use in patients treated with Kampo medicines—a risk for gastric cancer? Yakugaku Zasshi, 122, 403–405 (2002).PubMedCrossRefGoogle Scholar
  19. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55–63 (1983).PubMedCrossRefGoogle Scholar
  20. Muto, A., Hori, M., Sasaki, Y., Saitoh, A., Yasuda, I., Maekawa, T., Uchida, T., Asakura, K., Nakazato, T., Kaneda, T., Kizaki, M., Ikeda, Y., and Yoshida, T., Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol. Cancer Ther., 6, 987–993 (2007).PubMedCrossRefGoogle Scholar
  21. Nicholson, D. W. and Thornberry, N. A., Caspases: killer proteases. Trends Biochem. Sci., 22, 299–306 (1997).PubMedCrossRefGoogle Scholar
  22. O’Dell, S. D. and Day, I. N. M., Molecules in focus insulin-like growth factor (IGF2). Int. J. Biochem. Cell Biol., 30, 767–771 (1998).PubMedCrossRefGoogle Scholar
  23. Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J., Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell, 74, 609–619 (1993).PubMedCrossRefGoogle Scholar
  24. Pervin, S., Singh, R., and Chaudhuri, G., Nitric-oxide-induced Bax integration into the mitochondrial membrane commits MDA-MB-468 cells to apoptosis: essential role of Akt. Cancer Res., 63, 5470–5479 (2003).PubMedGoogle Scholar
  25. Ping, S., Wang, S., Zhang, J., and Peng, X., Effects of all-trans-retinoic acid on mRNA binding protein p62 in human gastric cancer cells. Int. J. Biochem. Cell Biol., 37, 616–627 (2005).PubMedCrossRefGoogle Scholar
  26. Reed, J. C., Mechanisms of Apoptosis. Am. J. Pathol., 157, 1415–1430 (2000).PubMedGoogle Scholar
  27. Salvesen, G. S. and Dixit, V. M., Caspases. intracellular signaling by proteolysis. Cell, 91, 443–446 (1997).PubMedCrossRefGoogle Scholar
  28. Sedlak, T. W., Oltvai, Z. N., Yang, E., Wang, K., Boise, L. H., Thompson, C. B., and Korsmeyer, S. J., Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. U S A, 92, 7834–7838 (1995).PubMedCrossRefGoogle Scholar
  29. Shieh, D. E., Chen, Y. Y., Yen, M. H., Chiang, L. C., and Lin, C. C., Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells. Life Sci., 74, 2279–2290 (2004).PubMedCrossRefGoogle Scholar
  30. Su, Y. T., Chang, H. L., Shyue, S. K., and Hsu. S. A., Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem. Pharmacol., 70, 229–241(2005).PubMedCrossRefGoogle Scholar
  31. Sun, M., Sakakibara, H., Ashida, H., Danno, G., and Kanazawa, K., Cytochrome P4501A1-inhibitory action of antimutagenic anthraquinones in medicinal plants and the structure-activity relationship. Biosci. Biotechnol. Biochem., 64, 1373–1378 (2000).PubMedCrossRefGoogle Scholar
  32. Wang, R., Wan, Q., Zhang, Y., Huang, F., Yu, K., Xu, D., Wang, Q., and Sun, J., Emodin suppresses interleukin-1â induced mesangial cells proliferation and extracellular matrix production via inhibiting P38 MAPK. Life Sci., 80, 2481–2488 (2007).PubMedCrossRefGoogle Scholar
  33. Yang, J., Li, H., Chen, Y. Y., Wang, X. J., Shi, G. Y., Hu, Q. S., Kang, X. L., Lu, Y., Tang, X. M., Guo, Q. S., and Yi, J., Anthraquinones sensitize tumor cells to arsenic cytotoxicity in vitro and in vivo via reactive oxygen species-mediated dual regulation of apoptosis. Free Radic. Biol. Med., 37, 2027–2041 (2004).PubMedCrossRefGoogle Scholar
  34. Yi, J., Yang, J., He, R., Gao, F., Sang, H., Tang, X., and Ye, R. D., Emodin enhances arsenic trioxide-Induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling. Cancer Res., 64, 108–116 (2004).PubMedCrossRefGoogle Scholar
  35. Yue, R., Experimental study and clinical uses of rhubarb. Zhong Xi Yi Jie He Za Zhi, 10, 310–313 (1990).PubMedGoogle Scholar
  36. Zinkel, S., Gross, A., and Yang, E., BCL2 family in DNA damage and cell cycle control. Cell Death Differ., 13, 1351–1359 (2006).PubMedCrossRefGoogle Scholar
  37. Zhang, L., Chang, C. J., Bacus, S. S., and Hung, M. C., Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin. Cancer Res., 55, 3890–3896 (1995).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  1. 1.Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningP. R. China

Personalised recommendations