Effects of tanshinone IIA on the hepatotoxicity and gene expression involved in alcoholic liver disease

  • Hu-Quan Yin
  • Youn-Su Kim
  • You-Jin Choi
  • Youn-Chul Kim
  • Dong-Hwan Sohn
  • Shi-Yong Ryu
  • Byung-Hoon Lee
Articles Drug Efficacy and Safety

Abstract

Tanshinone IIA is one of the most abundant constituents of the root of Salvia miltiorrhiza BUNGE which exerts antioxidant and anti-inflammatory actions in many experimental disease models. In the present study, we demonstrated that the standardized fraction of S. miltiorrhiza (Sm-SF) was able to protect RAW 264.7 cells from ethanol-and lipopolysaccharide (LPS)-induced production of superoxide radical, activation of NADPH oxidase and subsequently death of the cells. Among four main components of Sm-SF, tanshinone IIA was the most potent in protecting cells from LPS-and ethanol-induced cytotoxicity. LPS or ethanol induced the expression of CD14, iNOS, and SCD1 and decreased RXR-α, which was completely reversed by tanshinone IIA. In H4IIEC3 cells, 10 μM tanshinone IIA effectively blocked ethanol-induced fat accumulation as evidenced by Nile Red binding assay. These results indicate that tanshinone IIA may have potential to inhibit alcoholic liver disease by reducing LPS-and ethanol-induced Kupffer cell sensitization, inhibiting synthesis of reactive oxygen/nitrogen species, inhibiting fatty acid synthesis and stimulating fatty acid oxidation.

Key words

Salvia miltiorrhiza Tanshinone IIA Alcoholic liver disease Oxidative stress Lipid metabolism 

References

  1. Adachi, Y., Bradford, B. U., Gao, W., Bojes, H. K., and Thurman, R. G., Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology, 20, 453–460 (1994).PubMedCrossRefGoogle Scholar
  2. Babior, B. M., NADPH Oxidase: An Update. Blood, 93, 1464–1476 (1999).PubMedGoogle Scholar
  3. Borenfreund, E. and Puerner, J. A., A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). Methods Cell Sci., 9, 7–9 (1985).Google Scholar
  4. Butler, J., Jayson, G. G., and Swallow, A. J., The reaction between the superoxide anion radical and cytochrome c. Biochim. Biophys. Acta., 408, 215–222 (1975).CrossRefGoogle Scholar
  5. Cao, E. H., Liu, X. Q., Wang, J. J., and Xu, N. F., Effect of natural antioxidant tanshinone II-A on DNA damage by lipid peroxidation in liver cells. Free Radic. Biol. Med., 20, 801–806 (1996).PubMedCrossRefGoogle Scholar
  6. Cathcart, M. K., Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 24, 23–28 (2004).PubMedCrossRefGoogle Scholar
  7. Cheng, T. O., Cardiovascular effects of Danshen. Int. J. Cardiol., 121, 9–22 (2007).PubMedCrossRefGoogle Scholar
  8. Dobrzyn, P. and Dobrzyn, A., Stearoyl-CoA desaturase: A new therapeutic target of liver steatosis. Drug. Dev. Res., 67, 643 (2006).CrossRefGoogle Scholar
  9. Fu, J., Huang, H., Liu, J., Pi, R., Chen, J., and Liu, P., Tanshione IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur. J. Pharmacol., 568, 213–221 (2007).PubMedCrossRefGoogle Scholar
  10. Gyamfi, M. A., Kocsis, M. G., He, L., Dai, G., Mendy, A. J., and Wan, Y. J., The role of retinoid X receptor alpha in regulating alcohol metabolism. J. Pharmacol. Exp. Ther., 319, 360–368 (2006).PubMedCrossRefGoogle Scholar
  11. Heitzer, T., Wenzel, U., Hink, U., Krollner, D., Skatchkov, M, Stahl, R. A., Macharzina, R., Brasen, J., Meinertz, T., and Munzel, T., Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: Evidence for an involvement of protein kinase C. Kidney Int., 55, 252–260 (1999).PubMedCrossRefGoogle Scholar
  12. Heyman, R. A., Mangelsdorf, D. J., Dyck, J. A., Stein, R. B., Eichele, G., Evans, R. M., and Thaller, C., 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell, 68, 397–406 (1992).PubMedCrossRefGoogle Scholar
  13. Hines, I. N. and Wheeler, M. D., Recent Advances in Alcoholic Liver Disease III. Role of the innate immune response in alcoholic hepatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 287, 310–314 (2004).CrossRefGoogle Scholar
  14. IJpenberg, A., Tan, N.S., Gelman, L., Kersten, S., Seydoux, J., Xu, J., Metzger, D., Canaple, L., Chambon, P., and Wahli, W., In vivo activation of PPAR target genes by RXR homodimers. EMBO J., 23, 2083–2091 (2004).PubMedCrossRefGoogle Scholar
  15. Jang, S. I., Jeong, S. I., Kim, K. J., Kim, H. J., Yu, H. H., Park, R., Kim, H. M., and You, Y. O., Tanshione IIA from Salvia miltiorrhiza inhibits inducible nitric oxide synthase expression and production of TNF-alpha, IL-1beta and IL-6 in activated RAW 264.7 cells. Planta Med., 69, 1057–1959 (2003)PubMedCrossRefGoogle Scholar
  16. Karaa, A., Kamoun, W. S., and Clemens, M. G., chronic ethanol sensitizes the liver to endotoxin via effects on endothelial nitric oxide synthase regulation. Shock, 24, 447–454 (2005)PubMedCrossRefGoogle Scholar
  17. Kim, D. D., Sanchez, F. A., Duran, R. G., Kanetaka, T., and Duran, W. N., Endothelial nitric oxide synthase is a molecular vascular target for the Chinese herb Danshen in hypertension. Am. J. Physiol. Heart Circ. Physiol., 292, H2131–H2137 (2007).PubMedCrossRefGoogle Scholar
  18. Liu, Y., Wang, X., and Liu, Y., Protective effects of tanshinone IIA on injured primary cultured rat hepatocytes induced by CCI4. Zhong.Yao.Cai., 26, 415–417 (2003)PubMedGoogle Scholar
  19. Miyazaki, M., Dobrzyn, A., Man, W.C., Chu, K., Sampath, H., Kim, H.J., and Ntambi, J.M., Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and-independent mechanisms. J. Biol. Chem., 279, 25164–25171 (2004).PubMedCrossRefGoogle Scholar
  20. Moldeus, P., Hogberg, J., and Orrenius, S., Isolation and use of liver cells. Methods Enzymol., 52,60–71(1978)PubMedGoogle Scholar
  21. Nagy, L. E., Recent insights into the role of the innate immune systems in the development of alcoholic liver disease. Exp. Biol. Med., 228, 882–890 (2003).Google Scholar
  22. Ng, T. B., Liu, F., and Wang, Z. T., Antioxidative activity of natural products from plants. Life Sci., 66, 709–723 (2000).PubMedCrossRefGoogle Scholar
  23. Ntambi, J. M., Miyazaki, M., Stoehr, J. P., Lan, H., Kendziorski, C. M., Yandell, B. S., Song, Y., Cohen, P., Friedman, J. M. and Attie, A. D., Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc. Natl. Acad. Sci., 99, 11482–11486 (2002).PubMedCrossRefGoogle Scholar
  24. Park, E. J., Zhao, Y. Z., Kim, Y. C., and Sohn, D. H., PF2401-SF, standardized fraction of Salvia miltiorrhiza and its constituents, tanshinone I, tanshinone IIA, and cryptotanshinone, protect primary cultured rat hepatocytes from bile acid-induced apoptosis by inhibiting jNK phosphorylation. Food Chem. Toxicol., 45, 1891–1898 (2007).PubMedCrossRefGoogle Scholar
  25. Pervaiz, S. and Clement, M. V., Superoxide anion: Oncogenic reactive oxygen species. Int. J. Biochem. Cell. Biol., 39, 1297–1304 (2007).PubMedCrossRefGoogle Scholar
  26. Ryu, S. Y., Lee, C. O., and Choi, S. U., In vitro cytotoxicity of tanshinones from Salvia miltiorrhiza. Planta Med., 63, 339–342 (1997).PubMedCrossRefGoogle Scholar
  27. Smith, S. A., Peroxisome proliferator-activated receptors and the regulation of mammalian lipid metabolism. Biochem. Soc. Trans., 30, 1086–1090 (2002).PubMedCrossRefGoogle Scholar
  28. Spitzer, J. A., Zheng, M., Kolls, J. K., Vande Stouwe, C., and Spitzer, J. J., Ethanol and LPS modulate NF-kappaB activation, inducible NO synthase and COX-2 gene expression in rat liver cells in vivo. Front. Biosci., 7, a99–a108 (2002).PubMedCrossRefGoogle Scholar
  29. Thurman, R. G., Mechanisms of hepatotoxicity II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am. J. Physiol. Gastrointest. Liver Physiol., 275, 605–611 (1998).Google Scholar
  30. Wang, X., Wei, Y., Yuan, S., Liu, G., Lu, Y., Zhang, J., and Wang, W., Potential anticancer activity of tanshinone IIA against human breast cancer. Int. J. Cancer, 116, 799–807 (2005).PubMedCrossRefGoogle Scholar
  31. Wheeler, M.D., Endotoxin and Kupffer cell activation in alcoholic liver disease. Alcohol Res. Health, 27, 300–306 (2003).PubMedGoogle Scholar
  32. Xing, H. C., Li, L. J., Xu, K. J., Shen, T., Chen, Y. B., Chen, Y., Fu, S. Z., Sheng, J. F., Chen, C. L., Wang, J. G., Yan, D., Dai, F. W., and Sha, X. Y., Effects of Salvia miltiorrhiza on intestinal microflora in rats with ischemia/reperfusion liver injury. Hepatobiliary Pancreat. Dis. Int., 4, 274–280 (2005).PubMedGoogle Scholar
  33. Yokoyama, H., Fukuda, M., Okamura, Y., Mizukami, T., Ohgo, H., Kamegaya, Y., Kato, S., and Ishii, H., Superoxide anion release into the hepatic sinusoid after an acute ethanol challenge and its attenuation by Kupffer cell depletion. Alcohol. Clin. Exp. Res., 23, 71S–75S (1999).PubMedCrossRefGoogle Scholar
  34. You, M., Fischer, M., Deeg, M. A., and Crabb, D. W., Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J. Biol. Chem., 277, 29342–29347 (2002).PubMedCrossRefGoogle Scholar
  35. Zhang, H. S. and Wang, S. Q., Nrf2 is involved in the effect of tanshinone IIA on intracellular redox status in human aortic smooth muscle cells. Biochem. Pharmacol., 73, 1358–1366 (2007).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Hu-Quan Yin
    • 1
  • Youn-Su Kim
    • 1
  • You-Jin Choi
    • 1
  • Youn-Chul Kim
    • 2
    • 1
  • Dong-Hwan Sohn
    • 2
    • 1
  • Shi-Yong Ryu
    • 3
    • 1
  • Byung-Hoon Lee
    • 1
  1. 1.College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.College of PharmacyWonkwang UniversityIksan, JeonbukRepublic of Korea
  3. 3.Korea Research Institute of Chemical TechnologyDaejeonKorea

Personalised recommendations