Advertisement

Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212

  • Yuna Kim
  • Dokyung Lee
  • Donghyun Kim
  • Jooyong Cho
  • Jaewook Yang
  • Myungjun Chung
  • Kyungjae Kim
  • Namjoo Ha
Article

Abstract

In this study, we assessed the anticancer activity and bacterial enzyme inhibition of Bifidobacterium adolescentis SPM0212. B. adolescentis SPM0212 inhibited the proliferation of three human colon cancer cell lines: HT-29, SW 480, and Caco-2. SPM0212 also dose-dependently inhibited TNF-á production and changes in cellular morphology. B. adolescentis SPM0212 inhibited harmful fecal enzymes, including â-glucuronidase, â-glucosidase, tryptophanase, and urease. Thus, B. adolescentis SPM0212 exerts an anticancer effect and inhibits harmful fecal enzymes.

Key words

Bifidobacterium adolescentis Colon cancer HT-29 SW 480 Caco-2 Bacterial enzyme in colon 

References

  1. Ashkenazi, A. and Dixit, V. M., Death receptors: signaling and modulation. Science, 287, 1305–1308 (1998).CrossRefGoogle Scholar
  2. Choi, S. S., Kang, B. Y., Chung, M. J., Kim, S. D., Park, S. H., Kim, J. S., Kang, C. Y., and Ha, N. J., Safety assessment of potential lactic acid bacteria Bifidobacterium longum SPM1205 isolated from healthy Koreans. J. Microbiol., 43, 493–498 (2005).PubMedGoogle Scholar
  3. de la Chapelle, A., Genetic predisposition to colorectal cancer. Nat. Rev. Cancer, 4, 769–780 (2004).PubMedCrossRefGoogle Scholar
  4. Fernandes, C. F. and Shahani, K. M., Anticarcinogenic and immunological properties of dietary lactobacilli. J. Food Prot., 53, 704–710 (1990).Google Scholar
  5. Goldin, B. R. and Gorbach, S. L., The relationship between diet and rat fecal bacterial enzymes. J. Natl. Cancer Inst, 57, 371–375 (1976).PubMedGoogle Scholar
  6. Gomez, E., Melar, M. M., Silva, G. P., Portoles, A., and Gil, I., Exocellular products from Bifidobacterium adolescentis as immunomodifiers in the lymphoproliferative responses of mouse splenocytes. FEMS. Microbiol. Lett., 56, 47–52 (1998).CrossRefGoogle Scholar
  7. Greenlee, R. T., Hill-Harmon, M. B., Murray, T., and Thun, M., Cancer statistics. CA Cancer J. Clin, 51, 144 (2001).Google Scholar
  8. Kado-Oka, Y., Fujiwara, S., and Hirota, T., Effects of bifidobacteria cells on mitogenic response of splenocytes and several functions of phagocytes. Milchwissenshaft, 46, 626–630 (1991).Google Scholar
  9. Kim, D. H., Kang, H. J., Kim, S. W., and Kobayashi, K., pH-inducible β-glucuronidase and β-glucosidase of intestinal bacteria. Chem. Pharm. Bull., 40, 1967–1969 (1992).Google Scholar
  10. Kim, D. H., Lee, J. H., Bae, E. A., and Han, M. J., Induction and inhibition of indole of intestinal bacteria. Arch. Pharm. Res., 18, 351–355 (1995).CrossRefGoogle Scholar
  11. Lee, J., Ametani, A., Enomoto, A., Sato, Y., Motoshima, H., Ike, R., and Kaminogawa, S., Screening for the immunopotentiating activity of food microorganisms and enhancement of the immune response by Bifidobacterium adolescentis M101-4, Biosci. Biotech. Biochem., 57, 2127–2132 (1993).Google Scholar
  12. Maclennan, R. and Jensen, O. M., Dietary fibre, transit time, fecal bacteria, steroids and colon cancer in two Scandiavian populations. Lancet, 30, 207–211 (1977).Google Scholar
  13. Malhotra, S. L., Dietary factors in a study of colon cancer from Cancer Registry, with special reference to the role of saliva, milk and fermented milk products and vegetable fibre. Med. Hypotheses, 3, 122–126 (1977).PubMedCrossRefGoogle Scholar
  14. Manjunath, N. and Ranganathan, B., A cytotoxic substance produced by a wild culture of Lactobacillus casei D-34 against tumor cells. Indian J. Exp. Biol., 27, 141–145 (1989).PubMedGoogle Scholar
  15. Natoli, G., Costanzo, A., Guido, F., Moretti, F., and Lovreto, M., Apoptotic, non-apoptotic and anti-apoptotic pathways of TNF signaling. Biochem. Pharmacol., 56, 915–920 (1998).PubMedCrossRefGoogle Scholar
  16. Oda, M., Hasegawa, H., Komatsu, S., Kambe, M., and Tsuchiya, F., Anti-tumor polysaccharide from Lactobacillus sp. Agric. Biol. Chem., 47, 1623–1625 (1983).Google Scholar
  17. Pisani, P., Parkin, D. M., and Ferlay, J., Estimates of the worldwide mortality from eighteen major cancers in 1985. Int. J. Cancer, 54, 594–606 (1993).PubMedCrossRefGoogle Scholar
  18. Rafter, J. J., The role of lactic acid bacteria in colon cancer prevention. Scand. J. Gastroenterol., 30, 497–502 (1995).PubMedCrossRefGoogle Scholar
  19. Reddy, B. S., Nutritional factors and colon cancer. Crit. Rev. Fd. Sci. Nutr., 35, 175–190 (1995).CrossRefGoogle Scholar
  20. Reddy, B. S. and Wynder, E., Metabolic epidemiology of colorectal cancer: fecal bile acids and neutral steroids in colon cancer patients with adenomatous polyps. Cancer, 39, 2533–2539 (1977).PubMedCrossRefGoogle Scholar
  21. Scardovi, V., Genus Bifidobacterium, p. 1418–1434. In N.R. Krieg and J. G. Holt (ed.), Bergey’s Manual of Systemic Bacteriology, vol. 2, Williams & Willikins, MD (1986).Google Scholar
  22. Sekine, K., Ohta, J., Onishi, M., Tatsuki, T., Shimokawa, Y., Toida, T., Kawashima, T., and Hashimoto, Y., Analysis of antitumor properties of effector cells stimulated with a cell wall preparation (WPG) of Bifidobacterium infantis. Biol. Pharm. Bull., 18, 148–153 (1995).PubMedGoogle Scholar
  23. Sekine, K., Watanabe-Sekine, E., Toida, T., Kasashima, T., Kataoka, T., and Hashimoto, Y., Adjuvant activity of the cell wall of Bifidobacterium infantis for in vivo immune responses in mice. Immunopharmacol. Immunotoxicol., 16, 589–609 (1994).PubMedCrossRefGoogle Scholar
  24. Shahani, K. M. and Ayebo, A. D., Role of dietary lactobacilli in gastrointestinal microecology. Am. J. Clin. Nutr., 33, 2448–2457 (1980).PubMedGoogle Scholar
  25. van Faassen, A., Bol, J., van den Brandt, van den Bogaard, Hermus, R. J. J., and Janknegt, R. A., Bile acids and pH values in total feces and fecal water from habitually omnivorous and vegetarian subjects. Am. J. Clin. Nutr., 58, 917–922 (1993).PubMedGoogle Scholar
  26. Lee, W. K. and Lee, S. M., Inhibition effects of Lactic acid bacteria (LAB) on the Azoxymethance-induced colonic preneoplastic lesions. J. Microbiol., 38, 169–175 (2000).Google Scholar
  27. Williams, R. T., Toxicological implications of biotransformation by intestinal microflora. Toxicol. Appl. Pharmacol., 23, 769–781 (1972).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Yuna Kim
    • 1
  • Dokyung Lee
    • 1
  • Donghyun Kim
    • 1
  • Jooyong Cho
    • 1
  • Jaewook Yang
    • 2
    • 1
  • Myungjun Chung
    • 3
    • 1
  • Kyungjae Kim
    • 1
  • Namjoo Ha
    • 1
  1. 1.Department of PharmacySahmyook UniversitySeoulKorea
  2. 2.School of PharmacyWestern UniversityPomonaUSA
  3. 3.Cellbiotech, Co. Ltd.SeoulKorea

Personalised recommendations