Propolis reverses acetaminophen induced acute hepatorenal alterations: A biochemical and histopathological approach

  • Satendra Kumar Nirala
  • Monika BhadauriaEmail author


The present study has been conducted to evaluate the curative effect of propolis extract, a honey bee-hive product, against acetaminophen (APAP) induced oxidative stress and dysfunction in liver and kidney. Animals were challenged with APAP (2 g/kg, p.o.) followed by treatment of propolis extract (100 and 200 mg/kg, p.o.) once only after 24 h. Release of transaminases, alkaline phosphatase, lactate dehydrogenase, and serum bilirubin were increased, whereas hemoglobin and blood sugar were decreased after APAP administration. Antioxidant status in both the liver and kidney tissues were estimated by determining the glutathione, malondialdehyde content and activities of the CYP enzymes, which showed significant alterations after APAP intoxication. In addition, activities of adenosine triphosphatase, acid phosphatase, alkaline phosphatase, and major cell contents (total protein, glycogen and cholesterol) were also altered due to APAP poisoning. Propolis extract successfully reversed the alterations of these biochemical variables at higher dose. Improvements in hepatorenal histoarchitecture were also consistent with biochemical observations. The results indicated that ethanolic extract of propolis has ability to reverse APAP-induced hepatorenal biochemical and histopathological alterations probably by increasing the antioxidative defense activities due to various phenolic compounds present in it.

Key words

Acetaminophen CYP Enzymes Histopathology Liver function test Oxidative stress Propolis Acute alterations 


  1. Asatoor, A. M., and King, E., Simplified colorimetric blood sugar method. Process. Biochem., (325 Meeting) 56, xliv (1954).Google Scholar
  2. Aso, K., Kanno, G., Tadano, T., Satoh, S., and Ishikawa, M., Inhibitory effect of propolis on the growth of human leukemia U937. Biol. Pharm. Bull., 27, 727–730 (2004).PubMedCrossRefGoogle Scholar
  3. Banerjee, A., Linscheer, W. G., Chiji, H., Murthy, U. K., Cho, C., Nandi, J., and Chan, S. H., Induction of an ATPase inhibitor protein by propylthiouracil and protection against paracetamol (acetaminophen) hepatotoxicity in the rat. Br. J. Pharmacol., 124, 1041–1047 (1998).PubMedCrossRefGoogle Scholar
  4. Bhadauria, M., Nirala, S. K., and Shukla, S., Propolis protects CYP2E1 enzymatic activities and oxidative stress induced by carbon tetrachloride. Mol. Cell. Biochem. 302, 215–224 (2007a).PubMedCrossRefGoogle Scholar
  5. Bhadauria, M., Nirala, S. K., and Shukla, S., Duration dependent hepatoprotective effect of propolis extract against carbon tetrachloride induced acute damage in rats. Adv. Ther., 24, 1134–1143 (2007b).CrossRefGoogle Scholar
  6. Boyanova, L., Gergova, G., Nikolov, R., Derejian, S., Lazarova, E., Katsarov, N., Mitov, I., and Krastev, Z., Activity of Bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar-well diffusion, agar dilution and disc diffusion methods. J. Med. Microbiol., 54, 481–483 (2005).PubMedCrossRefGoogle Scholar
  7. Bratter, C., Tregel, M., Liebenthal, C., and Volk, H. D., Prophylactic effectiveness of propolis for immunostimulation: a clinical pilot study. Forsch Komplementarmed., 6, 256–260 (1999).PubMedCrossRefGoogle Scholar
  8. Breger, J., Fuchs, B. B., Aperis, G., Moy, T. I., Ausubel, F. M., and Mylonakis, E., Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathogens, 3, 168–177 (2007).CrossRefGoogle Scholar
  9. Brehe, J. E. and Burch, H. B., Enzymatic assay for glutathione. Anal. Biochem., 74, 189–197 (1976).PubMedCrossRefGoogle Scholar
  10. Chattopadhyay, R. R., Sarkar, S. K., Ganguly, S., Madda, C., and Baru, T. K., Hepatoprotective activity of Ocimum sanctum leaf extract against paracetamol induced hepatic damage in rats. Indian J. Pharmacol., 24, 163–165 (1992).Google Scholar
  11. Chen, W., Shockcor, J. P., Tonge, R., Hunter, A., Gartner, C., and Nelson, S. D., Protein and nonprotein cysteinyl thiol modification by N-acetyl-p-benzoquinoneimine via a novel ipso adduct. Biochem., 38, 8159–8166 (1999).CrossRefGoogle Scholar
  12. Claus, R., Kinscherf, R., Gehrke, C., Bonaterra, G., Basnet, P., Metz, J., and Deigner, H. P., Antiapoptotic effect of propolis extract and propol on human macrophages exposed to minimally modified low density lipoprotein. Arzneimittelforschung, 50, 373–379 (2000).PubMedGoogle Scholar
  13. Cochin, J. and Axelrod, J., Biochemical Pharmacological changes in the rats following chronic administration of morphine. J. Pharmacol. Exp. Ther., 125, 105–110 (1959).PubMedGoogle Scholar
  14. Cohen, S. D., Pumford, N. R., Khairallah, E. A., Boekelheide, K., Pohl, L. R., Amouzadeh, H. R., and Hinson, J. A., Selective protein covalent binding and target organ toxicity. Toxicol. Appl. Pharmacol., 143, 1–12 (1997).PubMedCrossRefGoogle Scholar
  15. Dantas, A. P., Salomao, K., Barbosa, H. S., and De Castro, S. L., The effect of Bulgarian propolis against Trypanosoma cruzi and during its interaction with host cells. Mem Inst Oswaldo Cruz, Rio de Janeiro., 101, 207–211 (2006).Google Scholar
  16. Davis, M., Ideo, G., Harrison, N. G., and Williams, R., Early inhibition of hepatic bilirubin conjugation after paracetamol (acetaminophen) administration in the rat. Digestion, 13, 42–48 (1975).PubMedGoogle Scholar
  17. de Campos, R. O., Paulino, N., da Silva, C. H., Scremin, A., and Calixto J. B., Anti-hyperalgesic effect of an ethanolic extract of propolis in mice and rats. Pharm. Pharmacol., 50, 1187–1193 (1998).Google Scholar
  18. Donnelly, P. J., Walker, R. M., and Racz, W. J., Inhibition of mitochondrial respiration in vivo is an early event in acetaminophen-induced hepatotoxicity. Arch. Toxicol., 68, 110–118 (1994).PubMedCrossRefGoogle Scholar
  19. El-Ghazaly, M. A. and Khayyal, M. T., The use of aqueous propolis extract against radiation-induced damage. Drugs Exp. Clin. Res., 21, 229–236 (1995).PubMedGoogle Scholar
  20. Gumbrecht, J. R. and Franklin, M. R., The alteration of hepatic cytochrome P-450 subpopulations of phenobarbital-induced and uninduced rat by regioselective hepatotoxins. Drug Meta. Dispos., 11, 312–318 (1983).Google Scholar
  21. Halk, P. B., Oster, B. L., and Summerson, W. H., The Practical Physiological Chemistry 14th ed. McGraw Hill Book Co. New York, pp. 1123 (1954).Google Scholar
  22. Haro, A., Lopez-Aliaga, I., Lisbona, F., Barrionuevo, M., Alferez, M. J., and Campos, M. S., Beneficial effect of pollen and/or propolis on the metabolism of iron, calcium, phosphorus, and magnesium in rats with nutritional ferropenic anemia. J. Agric. Food Chem., 48, 5715–5722 (2000).PubMedCrossRefGoogle Scholar
  23. Hart, S. G., Cartun, R. W., Wyand, D. S., Khairallah, E. A., and Cohen, S. D., Immunohistochemical localization of acetaminophen in target tissues of the CD-1 mouse: Correspondence of covalent binding with toxicity. Fund. Appl. Toxicol., 24, 260–274 (1995).CrossRefGoogle Scholar
  24. Itinose, A. M., Sakuno, M. L., and Bracht, A., Metabolic effects of acetaminophen. Studies in the isolated perfused rat liver. Cell Biochem. Funct., 7, 263–273 (1989).PubMedCrossRefGoogle Scholar
  25. Jaeschke, H., Knight, T. R., and Bajt, M. L., The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol. Lett., 144, 279–288 (2003).PubMedCrossRefGoogle Scholar
  26. Kato, R., and Gillette, J. R., Effect of starvation on NADPH dependent enzymes in liver microsomes of male and female rats. J. Pharmacol. Exp. Ther., 150, 279–284 (1965).Google Scholar
  27. Krol, W., Scheller, S., Shani, J., Pietsz, G., and Czuba, Z., Synergistic effect of ethanolic extract of propolis and antibiotics on the growth of Staphylococcus aureus. Arzneimittelforschung, 43, 607–609 (1993).PubMedGoogle Scholar
  28. Lee, S. M., Cho, T. S., Kim, D. J., and Cha, Y. N., Protective effect of ethanol against acetaminophen-induced hepatotoxicity in mice. Role of NADH:quinone reductase. Biochem. Pharmacol., 58, 1547–1555 (1999).PubMedCrossRefGoogle Scholar
  29. Lewis, D. F. V., Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes. Arch. Biochem. Biophy., 409, 32–44 (2003).CrossRefGoogle Scholar
  30. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with Folin’s phenol reagent. J. Biol. Chem., 193, 265–275 (1951).PubMedGoogle Scholar
  31. Moreno, M. I., Isla, M. I., Sampietro, A. R., and Vattuone, M. A., Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol., 71, 109–114 (2000).PubMedCrossRefGoogle Scholar
  32. Muriel, P., Garciapina, T., Perez-Alvarez, V., and Murelle, M., Silymarin protect against paracetamol induced lipid peroxidation and liver damage. J. Appl. Toxicol., 12, 439–442 (1992).PubMedCrossRefGoogle Scholar
  33. Murugesh, K. S., Yeligar, V. C., Maiti, B. C., and Maity, T. K., Hepatoprotective and antioxidative role of Berberis tinctoria Lesch leaves on paracetamol induced hepatic damage in rats. Iranian J. Pharmacol. Ther., 4, 64–69 (2005).Google Scholar
  34. Nirala, S. K., Bhadauria, M., Mathur, R., and Mathur, A., Influence of α-tocopherol, propolis and piperine on therapeutic potential of tiferron against beryllium induced toxic manifestations. J. Appl. Toxicol., 28, 44–54 (2008).PubMedCrossRefGoogle Scholar
  35. Orsolic, N. and Basic, I., Immunomodulation by water-soluble derivative of propolis: a factor of antitumor reactivity. J. Ethnopharmacol., 84, 265–273 (2003).PubMedCrossRefGoogle Scholar
  36. Potter, W. Z., Thorgeirsson, S. S., Jollow, D. J., and Mitchell J. R., Acetaminophen-induced hepatic necrosis, V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. Pharmacology, 12, 129–143 (1974).PubMedCrossRefGoogle Scholar
  37. Raso, G, Meli, R., Di Carlo, G., Pacilio, M., and Di Carlo, R., Inhibition of inducile nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A. 1. Life Sci., 68, 921–931 (2001).PubMedCrossRefGoogle Scholar
  38. Reitman, S. and Frankel, S., A colorimetric method for determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 28, 56–63 (1957).PubMedGoogle Scholar
  39. Russoa, A., Cardileb, V., Sanchezc, F., Troncosoc, N., Vanellaa, A., and Garbarinod, J. A., Chilean propolis: antioxidant activity and antiproliferative action in human tumor cell lines. Life Sci., 76, 545–558 (2004).CrossRefGoogle Scholar
  40. Schenkman, J. B. and Cinti, D. L., Preparation of microsomes with calcium. Methods Enzymol., 52, 83–89 (1978).PubMedCrossRefGoogle Scholar
  41. Seifter, S., Dayton, S., Novic, B., and Muintwyler, E., The estimation of glycogen with anthrone reagent. Arch. Biochem., 25, 191–200 (1950).PubMedGoogle Scholar
  42. Sener, G., Sehirli, O., Cetinel, S., Yegen, B. G., Gedik, N., and Ayanoglu-Dulger, G., Protective effects of MESNA (2-mercaptoethane sulfonate) against acetaminophen-induced hepatorenal oxidative damage in mice. J. Appl. Toxicol., 25, 20–29 (2005).PubMedCrossRefGoogle Scholar
  43. Seth, P. K. and Tangri, K. K., Biochemical effects of newer salicylic acid congeners. J. Pharm. Pharmacol., 18, 831–833 (1966).PubMedGoogle Scholar
  44. Shankar, K., Vaidya, V. S., Apte, U. M., Manautou, J. E., Ronis, M. J. J., Bucci, T. J., and Mehendale, H. M., Type 1 diabetic mice are protected from acetaminophen hepatotoxicity. Toxicol. Sci., 73, 220–234 (2003).PubMedCrossRefGoogle Scholar
  45. Sharma, S. K. and Krishna Murti, C. R., Production of lipid peroxides by brain. J. Neurochem., 15, 147–149 (1968).PubMedCrossRefGoogle Scholar
  46. Shimazawa, M., Chikamatsu, S., Morimoto, N., Mishima, S., Nagai, H., and Hara, H., Neuroprotection by Brazilian Green Propolis against In vitro and In vivo Ischemic Neuronal Damage. Evid. Compl. Alt. Med., 2, 201–207 (2005).Google Scholar
  47. Shukla, S., Bhadauria, M., and Jadon, A., Effect of propolis extract on acute carbon tetrachloride induced hepatotoxicity. Indian J. Exp. Biol., 42, 993–997 (2004).PubMedGoogle Scholar
  48. Shukla, S., Bhadauria, M., and Jadon, A., Evaluation of hepatoprotective potential of propolis extract in carbon tetrachloride induced liver injury in rats. Indian J. Biochem. Biophys., 42, 321–325 (2005).Google Scholar
  49. Snedecor, G. W. and Cochran, W. G., Statistical Method, 8th Edition. Iowa State University Press, Ames. Iowa (1994).Google Scholar
  50. Stepanovic, S., Antic, N., Dakic, I., and Svabic-Vlahovic, M., In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs. Microbiol. Res., 158, 353–357 (2003).PubMedCrossRefGoogle Scholar
  51. Swarup, H., Arora, S., and Pathak, S. C., Laboratory techniques in modern biology. Kalyani Publishers, New Delhi, pp. 187–189 (1992).Google Scholar
  52. Thomas, S. H. L., Paracetomol (acetaminophen) poisoning. Pharmacol. Ther., 60, 91–120 (1993).PubMedCrossRefGoogle Scholar
  53. Tirmenstein, M. A. and Nelson, S. D., Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a non-hepatotoxic regioisomer, 3-hydroxyacetoanilide in mouse liver. J. Biol. Chem., 264, 9814–9819 (1989).PubMedGoogle Scholar
  54. Wroblewski F. and La Due J. S., Colorimetric method for LDH. In: Wootton I.D.P. (Ed.), Microanalysis in Medical Biochemistry 4th edn. J and A Churchill Ltd., 104 Gloucester Place, pp. 115–118 (1955).Google Scholar
  55. Yanpallewar, S. U., Sen, S., Tapas, S., Kumar, M., Raju, S. S., and Acharya, S. B., Effect of Azadirachta indica on paracetamol-induced hepatic damage in albino rats. Phytomed., 10, 391–396 (2003).CrossRefGoogle Scholar
  56. Zaher, H., Buters, J. T., Ward, J. M., Bruno, M. K., Lucas, A. M., Stern, S. T., Cohen, S. D., and Gonzalez, F. J., Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol. Appl. Pharmacol., 152, 193–199 (1998).PubMedCrossRefGoogle Scholar
  57. Zlatkis, A., Zak, B., and Boyle, A. J., A new method for the direct determination of serum cholesterol. J. Lab. Clin. Med., 41, 486–492 (1953).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  1. 1.Reproductive Biology and Toxicology Laboratory, School of Studies in ZoologyJiwaji UniversityGwaliorIndia

Personalised recommendations