Advertisement

Archives of Pharmacal Research

, Volume 31, Issue 4, pp 429–437 | Cite as

In Vitro antioxidant and anti-inflammatory activities of Jaceosidin from Artemisia princeps Pampanini cv. Sajabal

  • Min-Jung Kim
  • Jong-Min Han
  • Yue-Yan Jin
  • Nam-In Baek
  • Myun-Ho Bang
  • Hae-Gon Chung
  • Myung-Sook Choi
  • Kyung-Tae Lee
  • Dai-Eun Sok
  • Tae-Sook Jeong
Article

Abstract

Oxidized low-density lipoprotein (oxLDL) plays a key role in the inflammatory processes of atherosclerosis. Jaceosidin isolated from the methanolic extracts of the aerial parts of Artemisia princeps Pampanini cv. Sajabal was tested for antioxidant and anti-inflammatory activities. Jaceosidin inhibited the Cu2+-mediated LDL oxidation with IC50 values of 10.2 μM in the thiobarbituric acid-reactive substances (TBARS) assay as well as the macrophage-mediated LDL oxidation. The antioxidant activities of jaceosidin were exhibited in the conjugated diene production, relative electrophoretic mobility, and apoB-100 fragmentation on copper-mediated LDL oxidation. Jaceosidin also inhibited the generation of reactive oxygen species (ROS) concerning in regulation of NF-κB signaling. And jaceosidin inhibited nuclear factor-kappa B (NF-κB) activity, nitric oxide (NO) production, and suppressed expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages.

Key words

Artemisia princeps Pampanini cv. Sajabal Jaceosidin Antioxidant Anti-inflammation Macrophages Atherosclerosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguinaldo, A. M., Padolina, W. G. Abe, F., and Yamauchi, T., Flavonoids from Mikania cordata. Biochem. Sys. Ecol., 31, 665–668 (2003).CrossRefGoogle Scholar
  2. Bang, M. H., Kim, D. H., Yoo, J. S., Lee, D. Y., Song, M. C., Yang, H. J., Jeong, T. S., Lee, K. T., Choi, M. S., Chung, H. G., and Baek, N. I., Development of biologically active compounds from edible plant sources XIV. Isolation and identification of flavonoids from the aerial parts of Sajabalssuk (Artemisia herba). J. Kor. Soc. Appl. Biol. Chem., 48, 418–420 (2005).Google Scholar
  3. Bang, M. H., Chung, H. G., Song, M. C., Yoo, J. S., Chung, S. A., Lee, D. Y., Kim, S. Y., Jeong, T. S., Lee, K. T., Choi, M. S., and Baek, N. I., Development of biologically active compounds from edible plant sources XIV. Isolation of sterols from the aerial parts of Sajabalssuk (Artemisia herba). J. Kor. Soc. Appl. Biol. Chem., 49, 140–144 (2006).Google Scholar
  4. Bursa, S. Y. and Oleszek, W., Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem., 49, 2774–2779 (2001).CrossRefGoogle Scholar
  5. Eigler, A., Moeller, J., and Endres S., Exogenous and endogenous nitric oxide attenuates tumor necrosis factor synthesis in the murine macrophage cell line RAW 264.7. J. Immunol., 154, 4048–4054 (1995).PubMedGoogle Scholar
  6. Esterbauer, H., Striegl, G., Puhl, H., and Rotheneder, M., Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic. Res. Commun., 6, 67–75 (1989).PubMedCrossRefGoogle Scholar
  7. Glass, C. K. and Witztum, J. L., Atherosclerosis. The road ahead. Cell, 104, 503–516 (2001).PubMedCrossRefGoogle Scholar
  8. Griendling, K. K. and FitzGerald, G. A., Oxidative stress and cardiovascular injury: Part II: animal and human stidues. Circulation, 108, 2034–2040 (2003).PubMedCrossRefGoogle Scholar
  9. Jeon, S. M., Kim, H. K., Kim, H. J., Do, G. M., Jeong, T. S., Park, Y. B., and Choi, M. S. Hypocholesterolemic and antioxidative effects of naringenin and its two metabolites in high-cholesterol fed rats. Transl. Res., 149, 15–21 (2007).PubMedCrossRefGoogle Scholar
  10. Jeong, T. S., Lee, C. H., Choi, Y. K., Hyun, B. W., Oh, G. T., Kim, E. H., Kim, J. R., Han, J. I., and Bok, S. H., Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem. Biophys. Res. Commun., 284, 681–688 (2001).PubMedCrossRefGoogle Scholar
  11. Jin, Y. Z., Han, S. K, and Row, K. H., Extraction and purification of eupatilin from Artemisia princeps PAMPAN. J. Kor. Chem. Soc., 49, 196–200 (2005).CrossRefGoogle Scholar
  12. Jung, U. J., Baek, N. I., Chung, H. G., Bang, M. H., Yoo, J. S., Jeong, T. S., Lee, K. T., Kang, Y. J., Lee, M. K., Kim, H. J., Yeo, J. Y., and Choi, M. S., The anti-diabetic effects of ethanol extract from two variants of Artemisia princeps Pampanini in C57BL/KsJ-db/db mice. Food Chem. Toxicol., 45, 2022–2029 (2007).PubMedCrossRefGoogle Scholar
  13. Kim, D. H., Jung, S. J., Chung, I. S., Lee, Y. H., Kim, D. K., Kim, S. H., Kwon, B. M., Jeong, T. S., Park, M. H., Seoung, N. S., and Baek, N. I., Ergosterol peroxide from flowers of Erigeron annuus L. as an anti-atherosclerosis agent. Arch. Pharm. Res., 28, 541–545 (2005).PubMedGoogle Scholar
  14. Kim, Y. K., Son, K. H., Nam, J. Y., Kim, S. U., Jeong, T. S., Lee, W. S., Bok, S. H., Kwon, B. M., Park, Y. J., and Shin, J. M., Inhibition of cholesteryl ester transfer protein by rosenonolactone derivatives. J. Antibiot., 49, 815–815 (1996).PubMedGoogle Scholar
  15. Lee, J. H., Koo, T. H., Hwang, B. Y., and Lee, J. J., Kaurane diterpene, kamebakaurin, inhibits NF-kappa B by directly targeting the DNA-binding activity of p50 and blocks the expression of antiapoptotic NF-kappa B target genes. J. Biol. Chem. 277, 18411–18420 (2002).PubMedCrossRefGoogle Scholar
  16. Lee, M. K., Bok, S. H., Jeong, T. S., Moon, S. S., Lee, S. E., Park, Y. B., and Choi, M. S., Supplementation of naringenin and its synthetic derivative alters antioxidant enzyme activities of erythrocyte and liver in high cholesterol-fed rats. Bioorg. Med. Chem., 10, 2239–2244 (2002).PubMedCrossRefGoogle Scholar
  17. Lee, S. H., Shin, Y. W., Bae, E. A., Lee, B., Min, S., Baek, N. I., Chung, H. G., Kim, N. J., and Kim, D. H., Lactic acid bacteria increase antiallergic effect of Artemisia princeps pampanini SS-1. Arch. Pharm. Res., 29, 752–756 (2006).PubMedCrossRefGoogle Scholar
  18. Lee, W. S., Kim, J. R., Im, K. R., Cho, K. H., and Jeong, T. S. Antioxidant effects of diarylheptanoid derivatives from Alnus japonica on human LDL oxidation. Planta Med., 71, 295–299 (2005).PubMedCrossRefGoogle Scholar
  19. Lesnik, P., Dachet, C., Petit, L., Moreau, M., Griglio, S., Brudi P., and Chapman, M.J., Impact of a combination of a calcium antagonist and a beta-blocker on cell-and copper-mediated oxidation of LDL and on the accumulation and efflux of cholesterol in human macrophages and murine J774 cells. Arterioscler. Thromb. Vasc. Biol., 17, 979–988 (1997).PubMedGoogle Scholar
  20. Li, A. C. and Glass, C. K., The macrophage foam cell as a target for therapeutic intervention. Nat. Med., 8, 1235–1242 (2002).PubMedCrossRefGoogle Scholar
  21. Miura, S., Watanabe, J., Tomita, T., Sano, M., and Tomita, I., The inhibitory effects of tea polyphenols (flavan-3-ol derivatives) on Cu2+-mediated oxidative modification of low density lipoprotein. Biol. Pharm. Bull., 17, 1567–1572 (1994).PubMedGoogle Scholar
  22. Miyazawa, M. and Hisama, M., Antimutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci. Biotechnol. Biochem., 67, 2091–2099 (2003).PubMedCrossRefGoogle Scholar
  23. Monaco, C., Andreakos, E., Kiriakidis, S., Mauri, C., Bicknell, C., Foxwell, B., Cheshire, N., Paleolog, E., and Feldmann, M., Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proc. Natl. Acad. Sci. U S A, 2004, 101, 5634–5639 (2004a).PubMedCrossRefGoogle Scholar
  24. Monaco, C. and Paleolog, E., Nuclear factor kappaB: a potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc. Res. 61, 671–682 (2004b).PubMedCrossRefGoogle Scholar
  25. Park, J. Y., Cho, H. Y., Kim, J. K., Noh, K. H., Yang, J. R., Ahn, J. M., Lee, M. O., and Song, Y. S., Chlorella dichloromethane extract ameliorates NO production and iNOS expression through the down-regulation of NF kappa B activity mediated by suppressed oxidative stress in RAW264.7 macrophages. Clin. Chim. Acta, 351, 185–196 (2005).PubMedCrossRefGoogle Scholar
  26. Reid, V. C. and Mitchinson, M. J., Toxicity of oxidized low-density lipoprotein towards mouse peritoneal macrophages in vitro. Atherosclerosis, 98, 17–24 (1993).PubMedCrossRefGoogle Scholar
  27. Ryu, S. N., Han, S. S., Yang, J. J., Jeong, H. G., and Kang, S. S., Variation of eupatilin and jaceosidin content of mugwort. Kor. J. Crop Sci., 50, 204–207 (2005).Google Scholar
  28. Ryu, S. Y., Kim, J. O., and Choi, S. U., Cytotoxic components of Artemisia princeps. Planta Med., 63, 384–385 (1997).PubMedCrossRefGoogle Scholar
  29. Steinberg, D., Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem., 272, 20963–20966 (1997).PubMedCrossRefGoogle Scholar
  30. Steinberg, D., Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat. Med., 8, 1211–1217 (2002).PubMedCrossRefGoogle Scholar
  31. Tanaka, K., Iguchi, H., Taketani, S., Nakata, R., Tokumaru, S., Sugimoto, T., and Kojo, S., Facial degradation of apolipoprotein B by radical reactions and the presence of cleaved proteins in serum. J. Biochem., 125, 173–176 (1999).PubMedGoogle Scholar
  32. Umano, K., Hagi, Y., Nakahara, K., Shoji, A., and Shibamoto, T., Volatile chemicals identified in extracts from leaves of Japanese mugwort (Artemisia princeps pamp.). J. Agric. Food Chem., 48, 3463–3469 (2000).PubMedCrossRefGoogle Scholar
  33. Wilmsen, P. K., Spada, D. A., and Salvador, M., Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J. Agric. Food Chem., 53, 4757–4761 (2005).PubMedCrossRefGoogle Scholar
  34. Xu, M. Z., Lee, W. S., Han, J. M., Oh, H. W., Park, D. S., Tian, G. R., Jeong, T. S., and Park, H. Y. Antioxidant and anti-inflammatory activities of N-acetyldopamine dimers from Periostracum Cicadae. Bioorg. Med. Chem., 14, 7826–7834 (2006).PubMedCrossRefGoogle Scholar
  35. Yadav, P. N., Liu, Z., and Rafi, M. M., A diarylhepatanoid from Lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-κB, J. Pharmacol. Exp. Ther., 305, 925–931 (2003).PubMedCrossRefGoogle Scholar
  36. Yagi, K., Lipid Peroxides in Biology and Medicine, In Yagi, K. (Ed) Academic Press, Orlando, FL, pp. 223 (1982).Google Scholar
  37. Zingarelli, B., Hake, P. W., Yang, Z., O’Connor, M., Denenberg, A., and Wong, H. R., Absence of inducible nitric oxide synthase modulates early reperfusion-induced NF-kappaB and AP-1 activation and enhances myocardial damage. FASEB. J., 16, 327–342 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Min-Jung Kim
    • 1
    • 2
  • Jong-Min Han
    • 1
  • Yue-Yan Jin
    • 1
  • Nam-In Baek
    • 3
  • Myun-Ho Bang
    • 3
  • Hae-Gon Chung
    • 4
  • Myung-Sook Choi
    • 5
  • Kyung-Tae Lee
    • 6
  • Dai-Eun Sok
    • 2
  • Tae-Sook Jeong
    • 1
  1. 1.National Research Laboratory of Lipid Metabolism & AtherosclerosisKRIBBDaejeonKorea
  2. 2.College of PharmacyChungnam National UniversityDaejeonKorea
  3. 3.Graduate School of Biotechnology & Plant Metabolism Research CenterKyung Hee UniversitySuwonKorea
  4. 4.Gangwha Agricultural R&D CenterIncheonKorea
  5. 5.Department of Food Science & NutritionKyungpook National UniversityDaeguKorea
  6. 6.College of PharmacyKyung Hee UniversitySeoulKorea

Personalised recommendations