Cytotoxic components from the dried rhizomes of Zingiber officinaleRoscoe

  • Ju Sin Kim
  • Sa Im Lee
  • Hye Won Park
  • Jae Heon Yang
  • Tae-Yong Shin
  • Youn-Chul Kim
  • Nam-In Baek
  • Sung-Hoon Kim
  • Sang Un Choi
  • Byoung-Mog Kwon
  • Kang-Hyun Leem
  • Mun Yhung Jung
  • Dae Keun Kim
Article

Abstract

Five compounds were isolated from the chloroform-soluble fraction of the methanolic extract of the dried rhizomes of Zingiber officinale (Zingiberaceae) through repeated column chromatography. Their chemical structures were elucidated as 4-, 6-, 8-, and 10-gingerols, and 6-shogaol using spectroscopic analysis. Among the five isolated compounds, 6-shogaol exhibited the most potent cytotoxicity against human A549, SK-OV-3, SK-MEL-2, and HCT15 tumor cells. 6-shogaol inhibited proliferation of the transgenic mouse ovarian cancer cell lines, C1 (genotype: p53-/-, c-myc, K-ras) and C2 (genotype: p53-/-, c-myc, Akt), with ED50 values of 0.58 μM (C1) and 10.7 μM (C2).

Key words

Zingiber officinale Zingiberaceae Gingerol Shogaol Cytotoxicity Cell proliferation 

References

  1. But, P. P. H., Kimura, T., Guo, J.-X., and Sung, C. K., International collation of traditional and folk medicine. World Scientific, Singapore, p. 400, (1997).Google Scholar
  2. Denniff, P., Macleod, I., and Whiting, A. A., Studies in the biosynthesis of [6]-gingerol, pungent principle of ginger (Zingiber officinale). J. C. S. Perkin I, 2637–2644 (1980).Google Scholar
  3. Hori, Y., Miura, T., Hirai, Y., Fukumura, M., Nemoto, Y., Toriizuka, K., and Ida, Y., Pharmacognostic studies on ginger and related drugs-part 1: five sulfonated compounds from Zingiberis rhizome (Shokyo). Phytochemistry 62, 613–617 (2003).PubMedCrossRefGoogle Scholar
  4. Jang, I. M., Treatise on Asian herbal medicines. Daewon, Seoul, pp. 1030–1031, (2003).Google Scholar
  5. Jolad, S. D. R., Lantz, C., Chen, G. J., Bates, R. B., and Timmermann, B. N., Commercially processed dry ginger (Zingiber officinale): Composition and effects on LPS-stimulated PGE2 production. Phytochemistry 66, 1614–1635 (2005).PubMedCrossRefGoogle Scholar
  6. Lee, E. and Surh, Y.-J., Induction of apoptosis in HL-60 cells by pungent vanilloids, [6]-6gingerol and [6]-paradol. Cancer Lett. 134, 163–168 (1998).PubMedCrossRefGoogle Scholar
  7. Ma, J., Jin, X., Yang, L., and Liu, Z.-L., Diarylheptanoids from the rhizomes of Zingiber officianle. Phytochemistry 65, 1137–1143 (2004).PubMedCrossRefGoogle Scholar
  8. Masuda, Y., Kikuzaki, H., Hisamoto, M., and Nakatani, N., Antioxidant properties of gingerol related compounds from ginger. BioFactors 21, 293–296 (2004).PubMedGoogle Scholar
  9. Miyoshi, N., Nakamura, Y., Ueda, Y., Abe, M., Ozawa, Y., Uchida, K., and Osawa, T., Dietary ginger constituents, galanals A and B, are potent apoptosis inducers in Human T lymphoma Jurkat cells. Cancer Lett. 199, 113–119 (2003).PubMedCrossRefGoogle Scholar
  10. Orsulic, S., Li, Y., Soslow, R. A., Vitale-Cross, L. A., Gutkind, J. S., and Varmus, H. E., Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell. 1, 53–62 (2002).PubMedCrossRefGoogle Scholar
  11. Ryu, S. Y., Choi, S. U., Lee, C. O., and Zee, O. P., Antitumor activity of Psoralea corylifolia. Arch. Pharm. Res., 15, 356–359 (1992).CrossRefGoogle Scholar
  12. Shoji, N., Iwasa, A., Takemoto, T., Ishida, Y., and Ohizumi, Y., Cardiotonic principles of ginger (Zingiber officinale Roscoe). J. Pharm. Sci. 71, 1174–1175 (1982).PubMedCrossRefGoogle Scholar
  13. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R., New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 82, 1107–1112 (1990).PubMedCrossRefGoogle Scholar
  14. Wei, Q.-Y., Ma, J.-P., Cai, Y.-J., Yang, L., and Liu, Z.-L., Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. J. Ethnopharmacol., 102, 177–184 (2005).PubMedCrossRefGoogle Scholar
  15. Xing, D. and Orsulic, S., A genetically defined mouse ovarian carcinoma model for the molecular characterization of pathway-targeted therapy and tumor resistance. P. N. A. S., 102, 6936–6941 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2008

Authors and Affiliations

  • Ju Sin Kim
    • 1
  • Sa Im Lee
    • 1
  • Hye Won Park
    • 1
  • Jae Heon Yang
    • 1
  • Tae-Yong Shin
    • 1
  • Youn-Chul Kim
    • 2
    • 1
  • Nam-In Baek
    • 3
    • 1
  • Sung-Hoon Kim
    • 4
    • 1
  • Sang Un Choi
    • 5
    • 1
  • Byoung-Mog Kwon
    • 6
    • 1
  • Kang-Hyun Leem
    • 7
    • 1
  • Mun Yhung Jung
    • 8
    • 1
  • Dae Keun Kim
    • 1
  1. 1.College of PharmacyWoosuk UniversitySamryeKorea
  2. 2.College of PharmacyWonkwang UniversityIksanKorea
  3. 3.Graduate School of Biotechnology & Plant Metabolism Research CenterKyungHee UniversitySuwonKorea
  4. 4.Lab. of Angiogenesis and Chemoprevention, Department of Oriental Pathology, College of Oriental MedicineKyungHee UniversitySeoulKorea
  5. 5.Korea Research Institute of Chemical TechnologyTaejeonKorea
  6. 6.Korea Research Institute of Bioscience and BiotechnologyKISTTaejeonKorea
  7. 7.College of Oriental MedicineSemyung UniversityJechonKorea
  8. 8.Department of Food Science and TechnologyWoosuk UniversitySamryeKorea

Personalised recommendations