, Volume 25, Issue 7, pp 707–710 | Cite as

Komplexe Wechselwirkungen zwischen Arzneimitteln und dem Mikrobiom

  • Lisa MaierEmail author


Our knowledge regarding the interplay between drugs, our microbiome, and the host has long been restricted to a few exceptional cases. Recent evidence from more systematic studies reveals that the majority of commonly used drugs underlie such interactions. This highlights the need for a more comprehensive understanding of the interface between pharmacology, microbial ecology, environmental factors, and the host genotype.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Blaser M (2016) Antibiotic use and its consequences for the normal microbiome. Science 352:544–545CrossRefGoogle Scholar
  2. [2]
    Le Bastard Q, Al-Ghalith GA, Gregoire M et al. (2018) Systematic review: human gut dysbiosis induced by nonantibiotic prescription medications. Aliment Pharmacol Ther 47:332–345CrossRefGoogle Scholar
  3. [3]
    Tramontano M, Andrejev S, Pruteanu M et al. (2018) Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol 3:514–522CrossRefGoogle Scholar
  4. [4]
    Maier L, Pruteanu M, Kuhn M et al. (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555:623–628CrossRefGoogle Scholar
  5. [5]
    Maier L, Typas A (2017) Systematically investigating the impact of medication on the gut microbiome. Curr Opin Microbiol 39:128–135CrossRefGoogle Scholar
  6. [6]
    Spanogiannopoulos P, Bess EN, Carmody RN et al. (2016) The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 14:273–287CrossRefGoogle Scholar
  7. [7]
    Sousa T, Yadav V, Zann V et al. (2014) On the colonic bacterial metabolism of azo-bonded prodrugsof 5-aminosalicylic acid. J Pharm Sci 103:3171–3175CrossRefGoogle Scholar
  8. [8]
    Haiser HJ, Seim KL, Balskus EP et al. (2014) Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 5:233–238CrossRefGoogle Scholar
  9. [9]
    Wallace BD, Wang H, Lane KT et al. (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–835CrossRefGoogle Scholar
  10. [10]
    Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R et al. (2019) Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570:462–467CrossRefGoogle Scholar
  11. [11]
    Pryor R, Martinez-Martinez D, Quintaneiro L et al. (2019) The role of the microbiome in drug response. Annu Rev Pharmacol Toxicol 6, doi: 10.1146/annurev-pharmtox-010919-023612Google Scholar
  12. [12]
    Elkrief A, Derosa L, Zitvogel L (2019) The intimate relationship between gut microbiota and cancer immunotherapy. Gut Microbes 10:424–428CrossRefGoogle Scholar
  13. [13]
    Lam KN, Alexander M, Turnbaugh PJ (2019) Precision medicine goes microscopic: engineering the microbiome to improve drug outcomes. Cell Host Microbe 26:22–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2019

Authors and Affiliations

  1. 1.Interfakultäres Institut für Mikrobiologie und InfektionsmedizinUniversität TübingenTübingenDeutschland

Personalised recommendations