, Volume 25, Issue 6, pp 680–682 | Cite as

Chirale Epoxidierung von Aryl-Alkyl-Ethern aus Lignin

  • Daniel Eggerichs
  • Anna C. Lienkamp
  • Thomas Heine
  • Carolin Mügge
  • Dirk TischlerEmail author
Biotechnologie Biokatalyse


Processing of lignin provides access to mono-aromatic compounds with a styrene-like structure. The vinyl sidechain can be attacked by monooxygenases, such as styrene or indole monooxygenases, to yield enantiopure epoxides. The obtained epoxides can be converted into valuable products, either enzyme- or non-enzyme driven. This provides access to drug-like molecules and technically relevant synthesis precursors. Herein, we report the setup of a simple screening strategy for useful epoxidases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ragauskas AJ, Beckham GT, Biddy MJ et al. (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843CrossRefGoogle Scholar
  2. [2]
    Chandel AK, Garlapati VK, Singh AK et al. (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381CrossRefGoogle Scholar
  3. [3]
    Tuck CO, Pérez E, Horváth IT et al. (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699CrossRefGoogle Scholar
  4. [4]
    Shukla S, Lochab B (2017) Lignin-based phenols: Potential feedstock for renewable benzoxazines. In: Ishida H, Froimowicz P (Hrsg.) Advanced and Emerging Polybenzoxazine Science and Technology. Elsevier, Amsterdam, S 473–498CrossRefGoogle Scholar
  5. [5]
    Verma AM, Kishore N (2018) A succinct review on upgrading of lignin-derived bio-oil model components. In: De S, Bandyopadhyay S, Assadi M et al. (Hrsg.) Sustainable Energy Technology and Policies: A Transformational Journey, Vol. 1. Springer, Singapur, S 315–334CrossRefGoogle Scholar
  6. [6]
    Molina-Gutiérrez S, Manseri A, Ladmiral V et al. (2019) Eugenol: a promising building block for synthesis of radically polymerizable monomers. Macromol Chem Phys 220:1900179CrossRefGoogle Scholar
  7. [7]
    Grossman A, Vermerris W (2019) Lignin-based polymers and nanomaterials. Curr Opin Biotechnol 56:112–120CrossRefGoogle Scholar
  8. [8]
    Heine T, Van Berkel WJH, Gassner G et al. (2018) Two-component FAD-dependent monooxygenases: current knowledge and biotechnological opportunities. Biology 7:42CrossRefGoogle Scholar
  9. [9]
    Heine T, Großmann C, Hofmann S et al. (2018) Enzymgesteuerte Indigoproduktion. BIOspektrum 24:446–448CrossRefGoogle Scholar
  10. [10]
    Heine T, Zimmerling J, Ballmann A et al. (2018) On the enigma of glutathione-dependent styrene degradation in Gordonia rubripertincta CWB2. Appl Env Microbiol 84:e00154–18CrossRefGoogle Scholar
  11. [11]
    Heine T, Großmann C, Hofmann S et al. (2019) Indigoid dyes by group E monooxygenases: mechanism and biocatalysis. Biol Chem 400:939–950CrossRefGoogle Scholar
  12. [12]
    Paul CE, Tischler D, Riedel A et al. (2015) Nonenzymatic regeneration of styrene monooxygenase for catalysis. ACS Catal 5:2961–2965CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2019

Authors and Affiliations

  • Daniel Eggerichs
    • 1
  • Anna C. Lienkamp
    • 1
  • Thomas Heine
    • 2
  • Carolin Mügge
    • 1
  • Dirk Tischler
    • 1
    Email author
  1. 1.NG Mikrobielle BiotechnologieRuhr-Universität BochumBochumDeutschland
  2. 2.AG UmweltmikrobiologieTU Bergakademie FreibergFreibergDeutschland

Personalised recommendations