, Volume 25, Issue 6, pp 610–613 | Cite as

Same same but different: Wie Cyanobakterien ein zentrales Enzym regulieren

  • Stephan KlähnEmail author
Wissenschaft Bakterielle Stickstoffassimilation


In most bacteria the activity of glutamine synthetase (GS) is regulated by covalent protein modifications. Remarkably, cyanobacteria, which are of increasing interest in biotechnology, have evolved fundamentally different regulatory mechanisms for the same enzyme. This includes GS inhibition by the interaction with small proteins, the inactivating factors (IF). In addition, they evolved unique mechanisms to monitor GS activity and to respond with IF biosynthesis accordingly.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622PubMedPubMedCentralGoogle Scholar
  2. [2]
    Woolfolk CA, Stadtman ER (1964) Cumulative feedback inhibition in the multiple end product regulation of glutamine synthetase activity in Escherichia coli. Biochem Biophys Res Commun 17:313–319CrossRefGoogle Scholar
  3. [3]
    Stadtman ER (2001) The story of glutamine synthetase regulation. J Biol Chem 276:44357–44364CrossRefGoogle Scholar
  4. [4]
    Fisher SH, Wray LV (2008) Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci USA 105:1014–1019CrossRefGoogle Scholar
  5. [5]
    García-Domínguez M, Reyes JC, Florencio FJ (1999) Glutamine synthetase inactivation by protein-protein interaction. Proc Natl Acad Sci USA 96:7161–7166CrossRefGoogle Scholar
  6. [6]
    García-Domínguez M, Reyes JC, Florencio FJ (2000) NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803. Mol Microbiol 35:1192–1201CrossRefGoogle Scholar
  7. [7]
    Tanigawa R, Shirokane M, Maeda Si S et al. (2002) Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Proc Natl Acad Sci USA 99:4251–4255CrossRefGoogle Scholar
  8. [8]
    Bolay P, Muro-Pastor M, Florencio FJ et al. (2018) The distinctive regulation of cyanobacterial glutamine synthetase. Life 8:52CrossRefGoogle Scholar
  9. [9]
    Klähn S, Schaal C, Georg J et al. (2015) The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7. Proc Natl Acad Sci USA 112:E6243–E6252CrossRefGoogle Scholar
  10. [10]
    Forchhammer K (2007) Glutamine signalling in bacteria. Front Biosci 12:358–370CrossRefGoogle Scholar
  11. [11]
    Klähn S, Bolay P, Wright PR et al. (2018) A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria. Nucleic Acids Res 46:10082–10094PubMedPubMedCentralGoogle Scholar
  12. [12]
    Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2019

Authors and Affiliations

  1. 1.Department für Solare Materialien AG Molecular Biology of CyanobacteriaHelmholtz-Zentrum für Umweltforschung - UFZLeipzigDeutschland

Personalised recommendations