Advertisement

BIOspektrum

, Volume 24, Issue 5, pp 484–487 | Cite as

Eine vielseitige Enzymklasse für die Synthese ringförmiger Siderophore

  • Sina Rütschlin
  • Thomas BöttcherEmail author
Wissenschaft Siderophor-Synthetasen
  • 28 Downloads

Abstract

The macrocyclic hydroxamate siderophore avaroferrin of Shewanella algae inhibits ferric iron dependent swarming motility of Vibrio alginolyticus. Investigating the biosynthesis of avaroferrin and related siderophores demonstrates the importance of the substrate pool for product formation and reveals an unprecedented flexibility in the substrate range of the responsible synthetases. Exploiting the promiscuity of these enzymes allowed to generate a broad spectrum of 15 different ring-size engineered siderophores some of which also inhibit Vibrio’s swarming behavior.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Griffiths E (1991) Iron and bacterial virulence – a brief overview. Biol Metals 4:7–13CrossRefGoogle Scholar
  2. [2]
    Böttcher T, Elliott HL, Clardy J (2016) Dynamics of snakelike swarming behavior of Vibrio alginolyticus. Biophys J 110:981–992CrossRefPubMedPubMedCentralGoogle Scholar
  3. [3]
    Böttcher T, Clardy J (2014) A chimeric siderophore halts swarming Vibrio. Angew Chem Int Ed 53:3510–3513CrossRefGoogle Scholar
  4. [4]
    Tanabe T, Funahashi T, Miyamoto K et al. (2011) Identification of genes, desR and desA, required for utilization of desferrioxamine B as a xenosiderophore in Vibrio furnissii. Biol Pharm Bull 34:570–574CrossRefPubMedGoogle Scholar
  5. [5]
    Kadi N, Arbache S, Song L et al. (2008) Identification of a gene cluster that directs putrebactin biosynthesis in Shewanella species: PubC catalyzes cyclodimerization of N-hydroxy-N-succinylputrescine. J Am Chem Soc 130:10458–10459CrossRefPubMedGoogle Scholar
  6. [6]
    Kadi N, Song L, Challis GL (2008) Bisucaberin biosynthesis: an adenylating domain of the BibC multi-enzyme catalyzes cyclodimerization of N-hydroxy-N-succinylcadaverine. Chem Commun 41:5119–5121CrossRefGoogle Scholar
  7. [7]
    Oves-Costales D, Kadi N, Challis GL (2009) The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis. Chem Commun 43:6530–6541CrossRefGoogle Scholar
  8. [8]
    Shaw-Reid CA, Kelleher NL, Losey HC et al. (1999) Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. Chem Biol 6:385CrossRefPubMedGoogle Scholar
  9. [9]
    Rütschlin S, Gunesch S, Böttcher T (2017) One enzyme, three metabolites: Shewanella algae controls siderophore production via the cellular substrate pool. Cell Chem Biol 24:598–604CrossRefPubMedGoogle Scholar
  10. [10]
    Rütschlin S, Gunesch S, Böttcher T (2018) One enzyme to build them all: ring-size engineered siderophores inhibit the swarming motility of Vibrio. ACS Chem Biol 13:1153–1158CrossRefPubMedGoogle Scholar
  11. [11]
    Szamosvári D, Rütschlin S, Böttcher T (2018) From pirates and killers: does metabolite diversity drive bacterial competition? Org Biomol Chem 16:2814CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich Chemie, Konstanz Research School Chemical Biology, ZukunftskollegUniversität KonstanzKonstanzDeutschland
  2. 2.Universität KonstanzKonstanzDeutschland

Personalised recommendations