Advertisement

BIOspektrum

, Volume 23, Issue 6, pp 643–645 | Cite as

Optische Genregulation in Mikrobioreaktoren

  • Peter M. Kusen
  • Kyra Hoffmann
  • Georg Wandrey
  • Jochen Büchs
  • Jörg Pietruszka
Wissenschaft · Methoden Optogenetik und Biotechnologie
  • 54 Downloads

Abstract

Photolabile-caged effector molecules allow non-invasive regulation of gene expression using cell-compatible UVA-irradiation. Based on this method, independent photoregulation of gene expression was combined with optical online monitoring of important cultivation parameters in a 48-well plate format. Thereby, an innovative screening system was created which allows for cost-effective and easily automated expression profiling as well as closed-loop process control.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Adams SR, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55:755–784CrossRefPubMedGoogle Scholar
  2. [2]
    Cruz FG, Koh JT, Link KH (2000) Light-activated gene expression. J Am Chem Soc 122:8777–8778CrossRefGoogle Scholar
  3. [3]
    Brieke C, Rohrbach F, Gottschalk A et al. (2012) Lichtgesteuerte Werkzeuge. Angew Chem 124:8572–8604CrossRefGoogle Scholar
  4. [4]
    Mayer G, Heckel A (2006) Biologically active molecules with a “light switch”. Angew Chem Int Ed 45:4900–4921CrossRefGoogle Scholar
  5. [5]
    Wandrey G, Bier C, Binder D et al. (2016) Light-induced gene expression with photocaged IPTG for induction profiling in a high-throughput screening system. Microb Cell Factories 15:63CrossRefGoogle Scholar
  6. [6]
    Kusen PM, Wandrey G, Krewald V et al. (2017) Light-controlled gene expression in yeast using photocaged Cu2+. J Biotechnol 258:117–125CrossRefPubMedGoogle Scholar
  7. [7]
    Kusen PM, Wandrey G, Probst C et al. (2016) Optogenetic regulation of tunable gene expression in yeast using photolabile caged methionine. ACS Chem Biol 11:2915–2922CrossRefPubMedGoogle Scholar
  8. [8]
    Binder D, Bier C, Grünberger A et al. (2016) Photocaged arabinose: a novel optogenetic switch for rapid and gradual control of microbial gene expression. ChemBioChem 17:296–299CrossRefPubMedGoogle Scholar
  9. [9]
    Binder D, Frohwitter J, Mahr R et al. (2016) Light-controlled cell factories: employing photocaged isopropyl-β-d-thiogalactopyranoside for light-mediated optimization of lac promoter- based gene expression and (+)-valencene biosynthesis in Corynebacterium glutamicum. Appl Environ Microbiol 82:6141–6149CrossRefPubMedPubMedCentralGoogle Scholar
  10. [10]
    Bier C, Binder D, Drobietz D et al. (2017) Photocaged carbohydrates: versatile tools for controlling gene expression by light. Synthesis 49:42–52Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Peter M. Kusen
    • 1
  • Kyra Hoffmann
    • 2
  • Georg Wandrey
    • 2
  • Jochen Büchs
    • 2
  • Jörg Pietruszka
    • 1
    • 3
  1. 1.Institut für Bioorganische ChemieHeinrich-Heine-Universität Düsseldorf Forschungszentrum JülichJülichDeutschland
  2. 2.Aachener Verfahrenstechnik (AVT), Biochemical EngineeringRWTH AachenAachenDeutschland
  3. 3.Institut für Bio- und GeowissenschaftenIBG-1: Biotechnologie, Forschungszentrum JülichJülichDeutschland

Personalised recommendations