, Volume 23, Issue 4, pp 384–387 | Cite as

Die Kontrolle zyklischer Nukleotide mittels Licht

Sensorische Photorezeptoren
  • Robert Stabel
  • Andreas MöglichEmail author


Sensory photoreceptors underpin diverse adaptive responses in nature and serve as genetically encoded, light-gated actuators in optogenetics. Photoactivated nucleotide cyclases (PACs) enable light-dependent control over the formation of cyclic nucleotides (cNMPs). Conversely, the engineered, red-light-activated phosphodiesterase LAPD mediates the hydrolytic breakdown of cNMPs. In combination, PACs and LAPD hence unlock precise and graded control over intracellular cNMPs and associated processes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Möglich A, Yang X, Ayers RA et al. (2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:21–47CrossRefPubMedGoogle Scholar
  2. [2]
    Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29CrossRefPubMedGoogle Scholar
  3. [3]
    Schröder-Lang S, Schwärzel M, Seifert R et al. (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4:39–42CrossRefPubMedGoogle Scholar
  4. [4]
    Stierl M, Stumpf P, Udwari D et al. (2011) Light-modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286:1181–1188Google Scholar
  5. [5]
    Avelar GM, Schumacher RI, Zaini PA et al. (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240CrossRefPubMedPubMedCentralGoogle Scholar
  6. [6]
    Ziegler T, Möglich A (2015) Photoreceptor engineering. Front Mol Biosci 2:30CrossRefPubMedPubMedCentralGoogle Scholar
  7. [7]
    Rockwell NC, Lagarias JC (2010) A brief history of phytochromes. Chem Phys Phys Chem 11:1172–1180CrossRefGoogle Scholar
  8. [8]
    Yang X, Kuk J, Moffat K (2008) Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. Proc Natl Acad Sci USA 105:14715–14720CrossRefPubMedPubMedCentralGoogle Scholar
  9. [9]
    Pandit J, Forman MD, Fennell KF et al. (2009) Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci USA 106:18225–18230CrossRefPubMedPubMedCentralGoogle Scholar
  10. [10]
    Jansen V, Jikeli JF, Wachten D (2017) How to control cyclic nucleotide signaling by light. Curr Opin Biotechnol 48:15–20CrossRefPubMedGoogle Scholar
  11. [11]
    Yoshida K, Tsunoda SP, Brown LS et al. (2017) A unique choanoflagellate enzyme rhodopsin with cyclic nucleotide phosphodiesterase activity. J Biol Chem 292:7531–7541CrossRefPubMedGoogle Scholar
  12. [12]
    Gasser C, Taiber S, Yeh C-M et al. (2014) Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc Natl Acad Sci USA 111:8803–8808CrossRefPubMedPubMedCentralGoogle Scholar
  13. [13]
    Schumacher CH, Körschen HG, Nicol C et al. (2016) A fluorometric activity assay for light-regulated cyclic-nucleotide-monophosphate actuators. Methods Mol Biol 1408:93–105CrossRefPubMedGoogle Scholar
  14. [14]
    Ryu M-H, Gomelsky M (2014) Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth Biol 3:802–810CrossRefPubMedPubMedCentralGoogle Scholar
  15. [15]
    Takala H, Björling A, Berntsson O et al. (2014) Signal amplification and transduction in phytochrome photosensors. Nature 509:245–248CrossRefPubMedPubMedCentralGoogle Scholar
  16. [16]
    Gourinchas G, Etzl S, Göbl C et al. (2017) Longrange allosteric signaling in red light-regulated diguanylyl cyclases. Sci Adv 3:e1602498CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Lehrstuhl für Biochemie, Forschungszentrum für Bio-Makromoleküle BiomacUniversität BayreuthBayreuthDeutschland

Personalised recommendations